Harmonic discs of solutions to the complex homogeneous Monge-Ampère equation
Publications Mathématiques de l'IHÉS, Volume 122 (2015), pp. 315-335

We study regularity properties of solutions to the Dirichlet problem for the complex Homogeneous Monge-Ampère equation. We show that for certain boundary data on P1 the solution Φ to this Dirichlet problem is connected via a Legendre transform to an associated flow in the complex plane called the Hele-Shaw flow. Using this we determine precisely the harmonic discs associated to Φ. We then give examples for which these discs are not dense in the product, and also prove that this situation persists after small perturbations of the boundary data.

Received:
Accepted:
Online First:
Published online:
DOI: 10.1007/s10240-015-0074-0
Keywords: Weak Solution, Dirichlet Problem, Regular Solution, Boundary Data, Boundary Component

Julius Ross 1; David Witt Nyström 1

1 DPMMS, University of Cambridge Cambridge UK
@article{PMIHES_2015__122__315_0,
     author = {Julius Ross and David Witt Nystr\"om},
     title = {Harmonic discs of solutions to the complex homogeneous {Monge-Amp\`ere} equation},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {315--335},
     year = {2015},
     publisher = {Springer Berlin Heidelberg},
     address = {Berlin/Heidelberg},
     volume = {122},
     doi = {10.1007/s10240-015-0074-0},
     language = {en},
     url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-015-0074-0/}
}
TY  - JOUR
AU  - Julius Ross
AU  - David Witt Nyström
TI  - Harmonic discs of solutions to the complex homogeneous Monge-Ampère equation
JO  - Publications Mathématiques de l'IHÉS
PY  - 2015
SP  - 315
EP  - 335
VL  - 122
PB  - Springer Berlin Heidelberg
PP  - Berlin/Heidelberg
UR  - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-015-0074-0/
DO  - 10.1007/s10240-015-0074-0
LA  - en
ID  - PMIHES_2015__122__315_0
ER  - 
%0 Journal Article
%A Julius Ross
%A David Witt Nyström
%T Harmonic discs of solutions to the complex homogeneous Monge-Ampère equation
%J Publications Mathématiques de l'IHÉS
%D 2015
%P 315-335
%V 122
%I Springer Berlin Heidelberg
%C Berlin/Heidelberg
%U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-015-0074-0/
%R 10.1007/s10240-015-0074-0
%G en
%F PMIHES_2015__122__315_0
Julius Ross; David Witt Nyström. Harmonic discs of solutions to the complex homogeneous Monge-Ampère equation. Publications Mathématiques de l'IHÉS, Volume 122 (2015), pp. 315-335. doi: 10.1007/s10240-015-0074-0

[1.] E. Bedford; D. Burns Holomorphic mapping of annuli in Cn and the associated extremal function, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 6 (1979), pp. 381-414 | MR | Zbl | Numdam

[2.] R. Berman, Bergman kernels and equilibrium measures for ample line bundles, preprint (2007), | arXiv

[3.] R. Berman, On the optimal regularity of weak geodesics in the space of metrics on a polarized manifold, preprint (2014), | arXiv

[4.] R. Berman and B. Berndtsson, Convexity of the K-energy on the space of Kähler metrics, preprint (2014), | arXiv

[5.] Z. Błocki et al. On geodesics in the space of Kahler metrics, Advances Geometric Analysis (2012), pp. 3-20

[6.] X. X. Chen The space of Kähler metrics, J. Differ. Geom., Volume 56 (2000), pp. 189-234 | Zbl

[7.] X. X. Chen; G. Tian Geometry of Kähler metrics and foliations by holomorphic discs, Publ. Math. Inst. Hautes Études Sci., Volume 107 (2008), pp. 1-107 | DOI | MR | Zbl | Numdam

[8.] L. A. Caffarelli; N. M. Rivière Smoothness and analyticity of free boundaries in variational inequalities, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 3 (1976), pp. 289-310 | Zbl | Numdam

[9.] L. A. Caffarelli; D. Kinderlehrer Potential methods in variational inequalities, J. Anal. Math., Volume 37 (1980), pp. 285-295 | MR | DOI | Zbl

[10.] T. Darvas; L. Lempert Weak geodesics in the space of Kähler metrics, Math. Res. Lett., Volume 19 (2012), pp. 1127-1135 | MR | DOI | Zbl

[11.] T. Darvas Morse theory and geodesics in the space of Kähler metrics, Proc. Am. Math. Soc., Volume 142 (2014), pp. 2775-2782 | MR | DOI | Zbl

[12.] S. K. Donaldson Holomorphic discs and the complex Monge-Ampère equation, J. Symplectic Geom., Volume 1 (2002), pp. 171-196 | MR | DOI | Zbl

[13.] S. K. Donaldson Nahm’s equations and free-boundary problems, The Many Facets of Geometry (2010), pp. 71-91 | DOI

[14.] Complex Monge-Ampére Equations and Geodesics in the Space of Kähler Metrics (2012) | Zbl

[15.] B. Gustafsson; A. Vasil’ev Conformal and Potential Analysis in Hele-Shaw Cells (2006) | Zbl

[16.] H. Hedenmalm; S. Shimorin Hele-Shaw flow on hyperbolic surfaces, J. Math. Pures Appl. (9), Volume 81 (2002), pp. 187-222 | MR | DOI | Zbl

[17.] C. Kiselman The partial Legendre transformation for plurisubharmonic functions, Invent. Math., Volume 49 (1978), pp. 137-148 | MR | DOI | Zbl

[18.] C. LeBrun Twistors, holomorphic disks, and Riemann surfaces with boundary, Perspectives in Riemannian Geometry (2006), pp. 209-221

[19.] L. Lempert; L. Vivas Geodesics in the space of Kähler metrics, Duke Math. J., Volume 162 (2013), pp. 1369-1381 | MR | DOI | Zbl

[20.] D. McDuff; D. Salamon J-Holomorphic Curves and Symplectic Topology (2012) (xiv+726 pp.) | Zbl

[21.] Y. Oh Fredholm theory of holomorphic discs under the perturbation of boundary conditions, Math. Z., Volume 222 (1996), pp. 505-520 | MR | DOI | Zbl

[22.] R. T. Rockafellar Convex Analysis (1970) | DOI | Zbl

[23.] J. Ross and D. W. Nyström, The Hele-Shaw flow and moduli of holomorphic discs, preprint (2012), | arXiv

[24.] J. Ross and D. W. Nyström, Homogeneous Monge-Ampère equations and canonical tubular neighbourhoods in Kähler geometry, preprint (2014), | arXiv

[25.] S. Semmes Complex Monge-Ampère and symplectic manifolds, Am. J. Math., Volume 114 (1992), pp. 495-550 | MR | DOI | Zbl

[26.] S. Sun Note on geodesic rays and simple test configurations, J. Symplectic Geom., Volume 8 (2010), pp. 57-65 | MR | DOI | Zbl

Cited by Sources: