The gonality conjecture on syzygies of algebraic curves of large degree
Publications Mathématiques de l'IHÉS, Volume 122 (2015), pp. 301-313
Received:
Accepted:
Online First:
Published online:
DOI: 10.1007/s10240-015-0072-2
Keywords: Vector Bundle, Line Bundle, Global Section, Hilbert Scheme, Free Resolution

Lawrence Ein 1; Robert Lazarsfeld 2

1 Department of Mathematics, University Illinois at Chicago 851 South Morgan St. 60607 Chicago IL USA
2 Department of Mathematics, Stony Brook University Stony Brook 11794 New York USA
@article{PMIHES_2015__122__301_0,
     author = {Lawrence Ein and Robert Lazarsfeld},
     title = {The gonality conjecture on syzygies of algebraic curves of large degree},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {301--313},
     year = {2015},
     publisher = {Springer Berlin Heidelberg},
     address = {Berlin/Heidelberg},
     volume = {122},
     doi = {10.1007/s10240-015-0072-2},
     language = {en},
     url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-015-0072-2/}
}
TY  - JOUR
AU  - Lawrence Ein
AU  - Robert Lazarsfeld
TI  - The gonality conjecture on syzygies of algebraic curves of large degree
JO  - Publications Mathématiques de l'IHÉS
PY  - 2015
SP  - 301
EP  - 313
VL  - 122
PB  - Springer Berlin Heidelberg
PP  - Berlin/Heidelberg
UR  - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-015-0072-2/
DO  - 10.1007/s10240-015-0072-2
LA  - en
ID  - PMIHES_2015__122__301_0
ER  - 
%0 Journal Article
%A Lawrence Ein
%A Robert Lazarsfeld
%T The gonality conjecture on syzygies of algebraic curves of large degree
%J Publications Mathématiques de l'IHÉS
%D 2015
%P 301-313
%V 122
%I Springer Berlin Heidelberg
%C Berlin/Heidelberg
%U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-015-0072-2/
%R 10.1007/s10240-015-0072-2
%G en
%F PMIHES_2015__122__301_0
Lawrence Ein; Robert Lazarsfeld. The gonality conjecture on syzygies of algebraic curves of large degree. Publications Mathématiques de l'IHÉS, Volume 122 (2015), pp. 301-313. doi: 10.1007/s10240-015-0072-2

[1.] M. Aprodu Green–Lazarsfeld gonality conjecture for a generic curve of odd genus, Int. Math. Res. Not., Volume 63 (2004), pp. 3409-3416 | MR | DOI

[2.] M. Aprodu; J. Nagel Koszul Cohomology and Algebraic Geometry (2010) | Zbl

[3.] M. Aprodu; C. Voisin Green–Lazarsfeld’s conjecture for generic curves of large gonality, C. R. Math. Acad. Sci. Paris, Volume 336 (2003), pp. 335-339 | MR | DOI | Zbl

[4.] E. Arbarello; M. Cornalba; P. Griffiths; J. Harris Geometry of Algebraic Curves, I (1985) | DOI

[5.] L. Ein; R. Lazarsfeld Asymptotic syzygies of algebraic varieties, Invent. Math., Volume 190 (2012), pp. 603-646 | MR | DOI | Zbl

[6.] G. Ellingsrud; L. Göttsche; M. Lehn On the cobordism class of the Hilbert scheme of a surface, J. Algeb. Geom., Volume 10 (2001), pp. 81-100 | Zbl

[7.] M. Green Koszul cohomology and the geometry of projective varieties, J. Differ. Geom., Volume 19 (1984), pp. 125-171 | Zbl

[8.] M. Green Koszul cohomology and the geometry of projective varieties, II, J. Differ. Geom., Volume 20 (1984), pp. 279-289 | Zbl

[9.] M. Green; R. Lazarsfeld On the projective normality of complete linear series on an algebraic curve, Invent. Math., Volume 83 (1985), pp. 73-90 | MR | DOI

[10.] R. Lazarsfeld Cohomology on symmetric products, syzygies of canonical curves, and a theorem of Kempf, Einstein Metrics and Yangs–Mills Connections (1993), pp. 89-97

[11.] R. Lazarsfeld Positivity in Algebraic Geometry, I & II (2004) | DOI | Zbl

[12.] J. Rathmann, in preparation.

[13.] C. Voisin Green’s generic syzygy conjecture for curves of even genus lying on a K3 surface, J. Eur. Math. Soc., Volume 4 (2002), pp. 363-404 | MR | DOI | Zbl

[14.] C. Voisin Green’s canonical syzygy conjecture for generic curves of odd genus, Compos. Math., Volume 141 (2005), pp. 1163-1190 | MR | DOI | Zbl

[15.] D. Yang Sn-equivariant sheaves and Koszul cohomology, Res. Math. Sci., Volume 1 (2014), p. 10 | MR | DOI

Cited by Sources: