Rigidity of generic singularities of mean curvature flow
Publications Mathématiques de l'IHÉS, Volume 121 (2015), pp. 363-382

Shrinkers are special solutions of mean curvature flow (MCF) that evolve by rescaling and model the singularities. While there are infinitely many in each dimension, Colding and Minicozzi II (Ann. Math. 175(2):755–833, 2012) showed that the only generic are round cylinders Sk×Rnk. We prove here that round cylinders are rigid in a very strong sense. Namely, any other shrinker that is sufficiently close to one of them on a large, but compact, set must itself be a round cylinder.

To our knowledge, this is the first general rigidity theorem for singularities of a nonlinear geometric flow. We expect that the techniques and ideas developed here have applications to other flows.

Our results hold in all dimensions and do not require any a priori smoothness.

Received:
Accepted:
Online First:
Published online:
DOI: 10.1007/s10240-015-0071-3
Keywords: Singular Point, Curvature Flow, Sectional Curvature, Generic Singularity, Tangent Cone

Tobias Holck Colding 1; Tom Ilmanen 2; William P. Minicozzi 1

1 Dept. of Math., MIT 77 Massachusetts Avenue 02139-4307 Cambridge MA USA
2 Departement Mathematik, ETH Zentrum 8092 Zürich Switzerland
@article{PMIHES_2015__121__363_0,
     author = {Tobias Holck Colding and Tom Ilmanen and William P. Minicozzi},
     title = {Rigidity of generic singularities of mean curvature flow},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {363--382},
     year = {2015},
     publisher = {Springer Berlin Heidelberg},
     address = {Berlin/Heidelberg},
     volume = {121},
     doi = {10.1007/s10240-015-0071-3},
     language = {en},
     url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-015-0071-3/}
}
TY  - JOUR
AU  - Tobias Holck Colding
AU  - Tom Ilmanen
AU  - William P. Minicozzi
TI  - Rigidity of generic singularities of mean curvature flow
JO  - Publications Mathématiques de l'IHÉS
PY  - 2015
SP  - 363
EP  - 382
VL  - 121
PB  - Springer Berlin Heidelberg
PP  - Berlin/Heidelberg
UR  - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-015-0071-3/
DO  - 10.1007/s10240-015-0071-3
LA  - en
ID  - PMIHES_2015__121__363_0
ER  - 
%0 Journal Article
%A Tobias Holck Colding
%A Tom Ilmanen
%A William P. Minicozzi
%T Rigidity of generic singularities of mean curvature flow
%J Publications Mathématiques de l'IHÉS
%D 2015
%P 363-382
%V 121
%I Springer Berlin Heidelberg
%C Berlin/Heidelberg
%U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-015-0071-3/
%R 10.1007/s10240-015-0071-3
%G en
%F PMIHES_2015__121__363_0
Tobias Holck Colding; Tom Ilmanen; William P. Minicozzi. Rigidity of generic singularities of mean curvature flow. Publications Mathématiques de l'IHÉS, Volume 121 (2015), pp. 363-382. doi: 10.1007/s10240-015-0071-3

[Al] W. K. Allard On the first variation of a varifold, Ann. Math. (2), Volume 95 (1972), pp. 417-491 | DOI | Zbl | MR

[AA] W. K. Allard; F. J. Almgren On the radial behavior of minimal surfaces and the uniqueness of their tangent cones, Ann. Math. (2), Volume 113 (1981), pp. 215-265 | DOI | Zbl | MR

[A] S. B. Angenent Shrinking doughnuts, Nonlinear Diffusion Equations and Their Equilibrium States (1992), pp. 21-38 | DOI

[AAG] S. Altschuler; S. B. Angenent; Y. Giga Mean curvature flow through singularities for surfaces of rotation, J. Geom. Anal., Volume 5 (1995), pp. 293-358 | DOI | Zbl | MR

[B] K. Brakke The Motion of a Surface by Its Mean Curvature (1978) | Zbl

[Ch] D. Chopp Computation of self-similar solutions for mean curvature flow, Exp. Math., Volume 3 (1994), pp. 1-15 | DOI | Zbl | MR

[CIMW] T. H. Colding; T. Ilmanen; W. P. Minicozzi; B. White The round sphere minimizes entropy among closed self-shrinkers, J. Differ. Geom., Volume 95 (2013), pp. 53-69 | Zbl | MR

[CM1] T. H. Colding; W. P. Minicozzi Generic mean curvature flow I; generic singularities, Ann. Math., Volume 175 (2012), pp. 755-833 | DOI | Zbl | MR

[CM2] T. H. Colding; W. P. Minicozzi Smooth compactness of self-shrinkers, Comment. Math. Helv., Volume 87 (2012), pp. 463-475 | DOI | Zbl | MR

[CM3] T. H. Colding and W. P. Minicozzi II, Uniqueness of blowups and Łojasiewicz inequalities, Ann. Math., to appear.

[CM4] T. H. Colding and W. P. Minicozzi II, The singular set of mean curvature flow with generic singularities, preprint.

[CM5] T. H. Colding and W. P. Minicozzi II, Differentiability of the arrival time, preprint.

[CMP] T. H. Colding; W. P. Minicozzi; E. K. Pedersen Mean curvature flow, Bull. AMS, Volume 52 (2015), pp. 297-333 | DOI | MR

[EH] K. Ecker; G. Huisken Interior estimates for hypersurfaces moving by mean curvature, Invent. Math., Volume 105 (1991), pp. 547-569 | DOI | Zbl | MR

[GGS] M. Giga; Y. Giga; J. Saal Nonlinear Partial Differential Equations. Asymptotic Behavior of Solutions and Self-Similar Solutions (2010) | Zbl

[H1] G. Huisken Asymptotic behavior for singularities of the mean curvature flow, J. Differ. Geom., Volume 31 (1990), pp. 285-299 | Zbl | MR

[H2] G. Huisken Local and global behaviour of hypersurfaces moving by mean curvature, Differential Geometry: Partial Differential Equations on Manifolds (1993), pp. 175-191 | DOI

[HS] G. Huisken; C. Sinestrari Convexity estimates for mean curvature flow and singularities of mean convex surfaces, Acta Math., Volume 183 (1999), pp. 45-70 | DOI | Zbl | MR

[I1] T. Ilmanen, Singularities of mean curvature flow of surfaces, 1995, preprint, http://www.math.ethz.ch/~/papers/pub.html.

[I2] T. Ilmanen Elliptic Regularization and Partial Regularity for Motion by Mean Curvature (1994)

[KKM] N. Kapouleas, S. Kleene and N. M. Möller, Mean curvature self-shrinkers of high genus: non-compact examples, J. Reine Angew. Math., to appear, | arXiv

[N] X. H. Nguyen, Construction of complete embedded self-similar surfaces under mean curvature flow. Part III, preprint, | arXiv

[SS] H. Soner; P. Souganidis Singularities and uniqueness of cylindrically symmetric surfaces moving by mean curvature, Commun. Partial Differ. Equ., Volume 18 (1993), pp. 859-894 | DOI | Zbl | MR

[Si] L. Simon Asymptotics for a class of evolution equations, with applications to geometric problems, Ann. Math., Volume 118 (1983), pp. 525-571 | DOI | Zbl

[S] A. Stone A density function and the structure of singularities of the mean curvature flow, Calc. Var. Partial Differ. Equ., Volume 2 (1994), pp. 443-480 | DOI | Zbl

[W1] B. White The nature of singularities in mean curvature flow of mean-convex sets, J. Am. Math. Soc., Volume 16 (2003), pp. 123-138 | DOI | Zbl

[W2] B. White A local regularity theorem for mean curvature flow, Ann. Math. (2), Volume 161 (2005), pp. 1487-1519 | DOI | Zbl

[W3] B. White, Partial regularity of mean-convex hypersurfaces flowing by mean curvature, Int. Math. Res. Not. (1994), 185–192.

Cited by Sources: