Knot state asymptotics II: Witten conjecture and irreducible representations
Publications Mathématiques de l'IHÉS, Volume 121 (2015), pp. 323-361

This article pursues the study of the knot state asymptotics in the large level limit initiated in Charles and Marché (Knot state asymptotics I. Abelian representations and the A–J conjecture, 2011). As a main result, we prove the Witten asymptotic expansion conjecture for the Dehn fillings of the figure eight knot.

The state of a knot is defined in the realm of Chern-Simons topological quantum field theory as a holomorphic section on the SU 2 -character manifold of the peripheral torus.

In the previous paper, we conjectured that the knot state concentrates on the character variety of the knot with a given asymptotic behavior on the neighborhood of the abelian representations. In the present paper we study the neighborhood of irreducible representations. We conjecture that the knot state is Lagrangian with a phase and a symbol given respectively by the Chern-Simons and Reidemeister torsion invariants. We show that under some mild assumptions, these conjectures imply the Witten conjecture on the asymptotic expansion of WRT invariants of the Dehn fillings of the knot.

Using microlocal techniques, we show that the figure eight knot state satisfies our conjecture starting from q-differential relations verified by the colored Jones polynomials. The proof relies on a differential equation satisfied by the Reidemeister torsion along the branches of the character variety, a phenomenon which has not been observed previously as far as we know.

Received:
Accepted:
Online First:
Published online:
DOI: 10.1007/s10240-015-0069-x
Keywords: Modulus Space, Line Bundle, Toeplitz Operator, Heisenberg Group, State ASYMPTOTICS

L. Charles 1; J. Marché 1

1 Institut de Mathématiques de Jussieu, UMR 7586, Université Pierre et Marie Curie—Paris 6 75005 Paris France
@article{PMIHES_2015__121__323_0,
     author = {L. Charles and J. March\'e},
     title = {Knot state asymptotics {II:} {Witten} conjecture and irreducible representations},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {323--361},
     year = {2015},
     publisher = {Springer Berlin Heidelberg},
     address = {Berlin/Heidelberg},
     volume = {121},
     doi = {10.1007/s10240-015-0069-x},
     language = {en},
     url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-015-0069-x/}
}
TY  - JOUR
AU  - L. Charles
AU  - J. Marché
TI  - Knot state asymptotics II: Witten conjecture and irreducible representations
JO  - Publications Mathématiques de l'IHÉS
PY  - 2015
SP  - 323
EP  - 361
VL  - 121
PB  - Springer Berlin Heidelberg
PP  - Berlin/Heidelberg
UR  - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-015-0069-x/
DO  - 10.1007/s10240-015-0069-x
LA  - en
ID  - PMIHES_2015__121__323_0
ER  - 
%0 Journal Article
%A L. Charles
%A J. Marché
%T Knot state asymptotics II: Witten conjecture and irreducible representations
%J Publications Mathématiques de l'IHÉS
%D 2015
%P 323-361
%V 121
%I Springer Berlin Heidelberg
%C Berlin/Heidelberg
%U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-015-0069-x/
%R 10.1007/s10240-015-0069-x
%G en
%F PMIHES_2015__121__323_0
L. Charles; J. Marché. Knot state asymptotics II: Witten conjecture and irreducible representations. Publications Mathématiques de l'IHÉS, Volume 121 (2015), pp. 323-361. doi: 10.1007/s10240-015-0069-x

[A] J. E. Andersen, The Witten invariant of finite order mapping tori I, | arXiv

[AH06] J. E. Andersen; S. K. Hansen Asymptotics of the quantum invariants for surgeries on the figure 8 knot, J. Knot Theory Ramif., Volume 15 (2006), pp. 479-548 | DOI | Zbl | MR

[BHMV95] C. Blanchet; N. Habegger; G. Masbaum; P. Vogel Topological quantum field theories derived from the Kauffman bracket, Topology, Volume 34 (1995), pp. 883-927 | DOI | Zbl | MR

[C03] L. Charles Quasimodes and Bohr-Sommerfeld conditions for the Toeplitz operators, Commun. Partial Differ. Equ., Volume 28 (2003), pp. 1527-1566 | DOI | Zbl | MR

[C06] L. Charles Symbolic calculus for Toeplitz operators with half-forms, J. Symplectic Geom., Volume 4 (2006), pp. 171-198 | DOI | Zbl | MR

[C10a] L. Charles On the quantization of polygon spaces, Asian J. Math., Volume 14 (2010), pp. 109-152 | DOI | Zbl | MR

[C10b] L. Charles, Asymptotic properties of the quantum representations of the mapping class group, Trans. Am. Math. Soc., | arXiv

[C11] L. Charles, Torus knot state asymptotics, | arXiv

[CM11] L. Charles; J. Marché Knot state asymptotics I. Abelian representations and the A-J conjecture, Publ. Math. (2015)

[Fra35] W. Franz Über die Torsion einer überdeckung, J. Reine Angew. Math., Volume 173 (1935), pp. 245-254

[Fre92] D. S. Freed Reidemeister torsion, spectral sequences and Brieskorn spheres, J. Reine Angew. Math., Volume 429 (1992), pp. 75-89 | Zbl | MR

[Fre95] D. S. Freed Classical Chern-Simons Theory, Adv. Math., Volume 113 (1995), pp. 237-303 | DOI | Zbl | MR

[FG91] D. Freed; R. Gompf Computer calculation of Witten’s 33-manifold invariant, Commun. Math. Phys., Volume 141 (1991), pp. 79-117 | DOI | Zbl | MR

[Ha05] S. K. Hansen, Analytic asymptotic expansions of the Reshetikhin-Turaev invariants of Seifert 3-manifolds for SU(2), | arXiv

[HT01] S. K. Hansen; T. Takata Quantum invariants of Seifert 3-manifolds and their asymptotic expansions, Invariants of Knots and 3-Manifolds (2002), pp. 69-87 (electronic)

[Hi05] H. Hikami On the quantum invariant for the Brieskorn homology spheres, Int. Math. J., Volume 16 (2005), pp. 661-685 | DOI | Zbl | MR

[HK98] C. D. Hodgson; S. P. Kerckhoff Rigidity of hyperbolic cone-manifolds and hyperbolic surgery, J. Differ. Geom., Volume 48 (1998), pp. 1-60 | Zbl | MR

[J92] L. C. Jeffrey Chern-Simons-Witten invariants of lens spaces and torus bundles, and the semiclassical approximation, Commun. Math. Phys., Volume 147 (1992), pp. 563-604 | DOI | Zbl | MR

[JW93] L. C. Jeffrey; J. Weitsman Half density quantization of the moduli space of flat connections and Witten’s semiclassical manifold invariants, Topology, Volume 32 (1993), pp. 509-529 | DOI | Zbl | MR

[K91] E. P. Klassen Representations of knot groups in SU(2), Trans. Am. Math. Soc., Volume 326 (1991), pp. 795-828 | Zbl | MR

[LZ99] R. Lawrence; D. Zagier Modular forms and quantum invariants of 3-manifolds, Asian J. Math., Volume 3 (1999), pp. 93-107 | Zbl | MR

[Mi62] J. Milnor A duality theorem for Reidemeister torsion, Ann. Math., Volume 76 (1962), pp. 134-147 | DOI | MR

[Mi66] J. Milnor Whitehead torsion, Bull. Am. Math. Soc., Volume 72 (1966), pp. 358-426 | DOI | Zbl | MR

[Mu08] H. Murakami An introduction to the volume conjecture and its generalizations, Acta Math. Vietnam., Volume 33 (2008), pp. 219-253 | Zbl | MR

[O01] T. Ohtsuki Problems on invariants of knots and 3-manifolds, Invariants of knots and 3-manifolds (2002), pp. 377-572 (i–iv)

[P97] J. Porti Torsion de Reidemeister pour les variétés hyperboliques (1997)

[RSW89] T. R. Ramadas; I. M. Singer; J. Weitsman Some comments on Chern-Simons gauge theory, Commun. Math. Phys., Volume 126 (1989), pp. 409-420 | DOI | Zbl | MR

[RT91] N. Reshetikhin; V. G. Turaev Invariants of 3-manifolds via link polynomials and quantum groups, Invent. Math., Volume 103 (1991), pp. 547-597 | DOI | Zbl | MR

[R96] L. Rozansky Residue formulas for the large k asymptotics of Witten’s invariants of Seifert manifolds. The case of SU(2), Commun. Math. Phys., Volume 178 (1996), pp. 27-60 | DOI | Zbl | MR

[Tu02] V. Turaev Torsions of 3-Manifolds (2002) | DOI

[W64] A. Weil Remarks on the cohomology of groups, Ann. Math., Volume 80 (1964), pp. 149-157 | DOI | Zbl | MR

[W64] E. Witten Quantum field theory and the Jones polynomial, Commun. Math. Phys., Volume 121 (1989), pp. 351-399 | DOI | Zbl | MR

[W91] E. Witten On quantum Gauge theories in two dimensions, Commun. Math. Phys., Volume 141 (1991), pp. 153-209 | DOI | Zbl | MR

Cited by Sources: