Quadratic differentials as stability conditions
Publications Mathématiques de l'IHÉS, Volume 121 (2015), pp. 155-278

We prove that moduli spaces of meromorphic quadratic differentials with simple zeroes on compact Riemann surfaces can be identified with spaces of stability conditions on a class of CY3 triangulated categories defined using quivers with potential associated to triangulated surfaces. We relate the finite-length trajectories of such quadratic differentials to the stable objects of the corresponding stability condition.

Received:
Accepted:
Online First:
Published online:
DOI: 10.1007/s10240-014-0066-5
Keywords: Riemann Surface, Marked Point, Boundary Component, Quadratic Differential, Simple Object

Tom Bridgeland 1; Ivan Smith 2

1 School of Mathematics and Statistics, University of Sheffield Hicks Building S3 7RH Hounsfield Road England UK
2 Centre for Mathematical Sciences CB3 0WB Cambridge England UK
@article{PMIHES_2015__121__155_0,
     author = {Tom Bridgeland and Ivan Smith},
     title = {Quadratic differentials as stability conditions},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {155--278},
     year = {2015},
     publisher = {Springer Berlin Heidelberg},
     address = {Berlin/Heidelberg},
     volume = {121},
     doi = {10.1007/s10240-014-0066-5},
     language = {en},
     url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-014-0066-5/}
}
TY  - JOUR
AU  - Tom Bridgeland
AU  - Ivan Smith
TI  - Quadratic differentials as stability conditions
JO  - Publications Mathématiques de l'IHÉS
PY  - 2015
SP  - 155
EP  - 278
VL  - 121
PB  - Springer Berlin Heidelberg
PP  - Berlin/Heidelberg
UR  - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-014-0066-5/
DO  - 10.1007/s10240-014-0066-5
LA  - en
ID  - PMIHES_2015__121__155_0
ER  - 
%0 Journal Article
%A Tom Bridgeland
%A Ivan Smith
%T Quadratic differentials as stability conditions
%J Publications Mathématiques de l'IHÉS
%D 2015
%P 155-278
%V 121
%I Springer Berlin Heidelberg
%C Berlin/Heidelberg
%U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-014-0066-5/
%R 10.1007/s10240-014-0066-5
%G en
%F PMIHES_2015__121__155_0
Tom Bridgeland; Ivan Smith. Quadratic differentials as stability conditions. Publications Mathématiques de l'IHÉS, Volume 121 (2015), pp. 155-278. doi: 10.1007/s10240-014-0066-5

[1.] A. Bayer; E. Macri The space of stability conditions on the local projective plane, Duke Math. J., Volume 160 (2011), pp. 263-322 | DOI | Zbl | MR

[2.] T. Bridgeland Stability conditions on triangulated categories, Ann. Math., Volume 166 (2007), pp. 317-345 | DOI | Zbl | MR

[3.] T. Bridgeland Spaces of stability conditions, Algebraic Geometry—Seattle 2005. Part I, 1–21. Proc. Sympos. Pure Math. 80, Part 1 (2009)

[4.] T. Bridgeland Stability conditions on K3 surfaces, Duke Math. J., Volume 141 (2008), pp. 241-291 Duke Math. J. (2009) | DOI | Zbl | MR

[5.] T. Bridgeland Stability conditions on a non-compact Calabi-Yau threefold, Commun. Math. Phys., Volume 266 (2006), pp. 715-733 | DOI | Zbl | MR

[6.] G. Cerulli Irelli; B. Keller; D. Labardini-Fragoso; P.-G. Plamondon Linear independence of cluster monomials for skew-symmetric cluster algebras, Compos. Math., Volume 149 (2013), pp. 1753-1764 | DOI | Zbl | MR

[7.] G. Cerulli Irelli; D. Labardini Fragoso Quivers with potential associated to triangulated surfaces, Part III: Tagged triangulations and cluster monomials, Compos. Math., Volume 148 (2012), pp. 1833-1866 | DOI | Zbl | MR

[8.] H. Derksen; J. Weyman; A. Zelevinsky Quivers with potential and their representations, I: Mutations, Sel. Math. New Ser., Volume 14 (2008), pp. 59-119 | DOI | Zbl | MR

[9.] A. Fletcher; V. Markovich Quasiconformal Maps and Teichmüller Theory (2007) (viii+189 pp.) | Zbl

[10.] S. Fomin; M. Shapiro; D. Thurston Cluster algebras and triangulated surfaces, Part I: Cluster complexes, Acta Math., Volume 201 (2008), pp. 83-146 | DOI | Zbl | MR

[11.] S. Fomin and D. Thurston, Cluster algebras and triangulated surfaces, Part II: Lambda lengths. Preprint. Available at | arXiv

[12.] C. Geiss, D. Labardini-Fragoso and J. Schröer, The representation type of Jacobian algebras. Preprint. Available at | arXiv

[13.] D. Gaiotto; G. Moore; A. Neitzke Four-dimensional wall-crossing via three-dimensional field theory, Commun. Math. Phys., Volume 299 (2010), pp. 163-224 | DOI | Zbl | MR

[14.] D. Gaiotto; G. Moore; A. Neitzke Wall-crossing, Hitchin systems and the WKB approximation, Adv. Math., Volume 234 (2013), pp. 239-403 | DOI | Zbl | MR

[15.] V. Ginzburg, Calabi-Yau algebras. Preprint. Available at | arXiv

[16.] W. Gu, Graphs with non-unique decomposition and their associated surfaces. Preprint. Available at | arXiv

[17.] D. Happel, I. Reiten and S. Smalo, Tilting in abelian categories and quasitilted algebras, Mem. Am. Math. Soc., 120 (1996).

[18.] R. Hartshorne Algebraic Geometry (1977) (xvi+496 pp.) | Zbl

[19.] N. Hitchin The self-duality equations on a Riemann surface, Proc. Lond. Math. Soc., Volume 55 (1987), pp. 59-126 | DOI | Zbl | MR

[20.] G. A. Jones; D. Singerman Complex Functions. An Algebraic and Geometric Viewpoint (1987) (xiv+342 pp.) | DOI | Zbl

[21.] B. Keller On Differential Graded Categories (2006), pp. 151-190

[22.] B. Keller On cluster theory and quantum dilogarithm identities, Representations of Algebras and Related Topics (2011), pp. 85-116 | DOI

[23.] B. Keller; D. Yang Derived equivalences from mutations of quivers with potential, Adv. Math., Volume 226 (2011), pp. 2118-2168 | DOI | Zbl | MR

[24.] A. D. King Moduli of representations of finite-dimensional algebras, Q. J. Math., Volume 45 (1994), pp. 515-530 | DOI | Zbl

[25.] A. D. King and Y. Qiu, Exchange graphs of acyclic Calabi-Yau categories. Preprint. Available at | arXiv

[26.] M. Kontsevich and Y. Soibelman, Stability structures, motivic Donaldson-Thomas invariants and cluster transformations. Preprint. Available at | arXiv

[27.] D. Labardini-Fragoso Quivers with potentials associated to triangulated surfaces, Proc. Lond. Math. Soc., Volume 98 (2009), pp. 797-839 | DOI | Zbl | MR

[28.] D. Labardini-Fragoso, Quivers with potentials associated to triangulated surfaces, Part II: Arc Representations. Preprint. Available at | arXiv

[29.] D. Labardini-Fragoso, Quivers with potentials associated to triangulated surfaces, Part IV: Removing boundary assumptions. Preprint. Available at | arXiv

[30.] H. Masur Closed trajectories for quadratic differentials with an application to billiards, Duke Math. J., Volume 53 (1986), pp. 307-314 | DOI | Zbl | MR

[31.] H. Masur; A. Zorich Multiple saddle trajectories on flat surfaces and the principal boundary of the moduli spaces of quadratic differentials, Geom. Funct. Anal., Volume 18 (2008), pp. 919-987 | DOI | Zbl | MR

[32.] A. Papadopoulos Metric Spaces, Convexity and Nonpositive Curvature (2005) | Zbl

[33.] P. Seidel; R. P. Thomas Braid group actions on derived categories of coherent sheaves, Duke Math. J., Volume 108 (2001), pp. 37-108 | DOI | Zbl | MR

[34.] S. Smale Diffeomorphisms of the 2-sphere, Proc. Am. Math. Soc., Volume 10 (1959), pp. 621-626 | Zbl | MR

[35.] I. Smith, Quiver algebras as Fukaya categories. Preprint. Available at | arXiv

[36.] K. Strebel Quadratic Differentials (1984) | DOI | Zbl

[37.] T. Sutherland, The modular curve as the space of stability conditions of a CY3 algebra. Preprint. Available at | arXiv

[38.] T. Sutherland, Stability conditions and Seiberg-Witten curves, Ph.D. Thesis, University of Sheffield, 2014.

[39.] W. Veech Moduli spaces of quadratic differentials, J. Anal. Math., Volume 55 (1990), pp. 117-171 | DOI | Zbl | MR

[40.] J. Woolf Stability conditions, torsion theories and tilting, J. Lond. Math. Soc., Volume 82 (2010), pp. 663-682 | DOI | Zbl | MR

[41.] O. Zariski On the problem of existence of algebraic functions of two variables possessing a given branch curve, Am. J. Math., Volume 51 (1929), pp. 305-328 | DOI | Zbl | MR

Cited by Sources: