Finite basis for analytic multiple gaps
Publications Mathématiques de l'IHÉS, Volume 121 (2015), pp. 57-79

An n-gap consists of n many pairwise orthogonal families of subsets of a countable set that cannot be separated. We prove that for every positive integer n there is a finite basis for the class of analytic n-gaps. The proof requires an analysis of certain combinatorial problems on the n-adic tree, and in particular a new partition theorem for trees.

Received:
Accepted:
Online First:
Published online:
DOI: 10.1007/s10240-014-0063-8
Keywords: Winning Strategy, Finite Basis, Partition Theorem, Minimal Idempotent, Asymmetric Version

Antonio Avilés 1; Stevo Todorcevic 2, 3

1 Departamento de Matemáticas, Universidad de Murcia Campus de Espinardo 30100 Murcia Spain
2 Department of Mathematics, University of Toronto M5S 3G3 Toronto Canada
3 Institut de Mathématiques de Jussieu, CNRS UMR 7586 Case 247, 4 place Jussieu 75252 Paris Cedex France
@article{PMIHES_2015__121__57_0,
     author = {Antonio Avil\'es and Stevo Todorcevic},
     title = {Finite basis for analytic multiple gaps},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {57--79},
     year = {2015},
     publisher = {Springer Berlin Heidelberg},
     address = {Berlin/Heidelberg},
     volume = {121},
     doi = {10.1007/s10240-014-0063-8},
     language = {en},
     url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-014-0063-8/}
}
TY  - JOUR
AU  - Antonio Avilés
AU  - Stevo Todorcevic
TI  - Finite basis for analytic multiple gaps
JO  - Publications Mathématiques de l'IHÉS
PY  - 2015
SP  - 57
EP  - 79
VL  - 121
PB  - Springer Berlin Heidelberg
PP  - Berlin/Heidelberg
UR  - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-014-0063-8/
DO  - 10.1007/s10240-014-0063-8
LA  - en
ID  - PMIHES_2015__121__57_0
ER  - 
%0 Journal Article
%A Antonio Avilés
%A Stevo Todorcevic
%T Finite basis for analytic multiple gaps
%J Publications Mathématiques de l'IHÉS
%D 2015
%P 57-79
%V 121
%I Springer Berlin Heidelberg
%C Berlin/Heidelberg
%U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-014-0063-8/
%R 10.1007/s10240-014-0063-8
%G en
%F PMIHES_2015__121__57_0
Antonio Avilés; Stevo Todorcevic. Finite basis for analytic multiple gaps. Publications Mathématiques de l'IHÉS, Volume 121 (2015), pp. 57-79. doi: 10.1007/s10240-014-0063-8

[1.] A. S. Argyros; P. Dodos; V. Kanellopoulos Unconditional families in Banach spaces, Math. Ann., Volume 341 (2008), pp. 15-38 | DOI | Zbl | MR

[2.] A. Avilés; S. Todorcevic Multiple gaps, Fundam. Math., Volume 213 (2011), pp. 15-42 | DOI | Zbl

[3.] A. Avilés; S. Todorcevic Finite basis for analytic strong n-gaps, Combinatorica, Volume 33 (2013), pp. 375-393 | DOI | Zbl | MR

[4.] T. J. Carlson; S. G. Simpson A dual form of Ramsey’s theorem, Adv. Math., Volume 53 (1984), pp. 265-290 | DOI | Zbl | MR

[5.] G. Dales A discontinuous homomorphism from C(X), Am. J. Math., Volume 101 (1979), pp. 647-734 | DOI | Zbl | MR

[6.] H. G. Dales; W. H. Woodin An Introduction to Independence for Analysts (1987) (xiv+241 pp.) | DOI | Zbl

[7.] P. Dodos Operators whose dual has non-separable range, J. Funct. Anal., Volume 260 (2011), pp. 1285-1303 | DOI | Zbl | MR

[8.] P. Dodos; V. Kanellopoulos On pair of definable orthogonal families, Ill. J. Math., Volume 52 (2008), pp. 181-201 | Zbl | MR

[9.] P. du Bois-Reymond Eine neue Theorie der Convergenz und Divergenz von Reihen mitpositiven Gliedern, J. Reine Angew. Math., Volume 76 (1873), pp. 61-91 | DOI | Zbl

[10.] J. Esterle Injection de semi-groupes divisibles dans des algèbres de convolution et construction d’homomorphismes discontinus de C(K), Proc. Lond. Math. Soc. (3), Volume 36 (1978), pp. 59-85 | DOI | Zbl | MR

[11.] W. T. Gowers Lipschitz functions on classical spaces, Eur. J. Comb., Volume 13 (1992), pp. 141-151 | DOI | Zbl | MR

[12.] J. Hadamard Sur les caractères de convergence des séries à termes positifs et sur les fonctions indéfiniment croissantes, Acta Math., Volume 18 (1894), pp. 319-336 | DOI | Zbl | MR

[13.] A. W. Hales; R. I. Jewett Regularity and positional games, Trans. Am. Math. Soc., Volume 106 (1963), pp. 222-229 | DOI | Zbl | MR

[14.] F. Hausdorff Die Graduierung nach dem Endverlauf, Abh. Königl. Sächs. Gesell. Wiss. Math.-Phys. Kl., Volume 31 (1909), pp. 296-334

[15.] F. Hausdorff Summen von ℵ1 Mengen, Fundam. Math., Volume 26 (1936), pp. 241-255

[16.] I. Kaplansky Normed algebras, Duke Math. J., Volume 16 (1949), pp. 399-418 | DOI | Zbl | MR

[17.] A. Kechris Classical Descriptive Set Theory (1995) | Zbl

[18.] K. R. Milliken A partition theorem for the infinite subtrees of a tree, Trans. Am. Math. Soc., Volume 263 (1981), pp. 137-148 | DOI | Zbl | MR

[19.] S. Todorcevic Analytic gaps, Fundam. Math., Volume 150 (1996), pp. 55-66 | Zbl | MR

[20.] S. Todorcevic Compact subsets of the first Baire class, J. Am. Math. Soc., Volume 12 (1999), pp. 1179-1212 | DOI | Zbl | MR

[21.] S. Todorcevic Introduction to Ramsey Spaces (2010) | DOI

[22.] W. H. Woodin On the consistency strength of projective uniformization, Proceedings of Herbrand Symposium (1982), pp. 365-384 | DOI

Cited by Sources: