The space of metrics of positive scalar curvature
Publications Mathématiques de l'IHÉS, Volume 120 (2014), pp. 335-367

We study the topology of the space of positive scalar curvature metrics on high dimensional spheres and other spin manifolds. Our main result provides elements in higher homotopy and homology groups of these spaces, which, in contrast to previous approaches, are of infinite order and survive in the (observer) moduli space of such metrics.

Along the way we construct smooth fiber bundles over spheres whose total spaces have non-vanishing A ^-genera, thus establishing the non-multiplicativity of the A ^-genus in fiber bundles with simply connected base.

Received:
Accepted:
Online First:
Published online:
DOI: 10.1007/s10240-014-0062-9
Keywords: Modulus Space, Normal Bundle, Homotopy Group, Spin Manifold, Positive Scalar Curvature

Bernhard Hanke 1; Thomas Schick 2; Wolfgang Steimle 3

1 Institut für Mathematik, Universität Augsburg 86135 Augsburg Germany
2 Mathematisches Institut, Georg-August-Universität Göttingen 37073 Göttingen Germany
3 Mathematisches Institut, Universität Bonn 53115 Bonn Germany
@article{PMIHES_2014__120__335_0,
     author = {Bernhard Hanke and Thomas Schick and Wolfgang Steimle},
     title = {The space of metrics of positive scalar curvature},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {335--367},
     year = {2014},
     publisher = {Springer Berlin Heidelberg},
     address = {Berlin/Heidelberg},
     volume = {120},
     doi = {10.1007/s10240-014-0062-9},
     zbl = {1321.58008},
     language = {en},
     url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-014-0062-9/}
}
TY  - JOUR
AU  - Bernhard Hanke
AU  - Thomas Schick
AU  - Wolfgang Steimle
TI  - The space of metrics of positive scalar curvature
JO  - Publications Mathématiques de l'IHÉS
PY  - 2014
SP  - 335
EP  - 367
VL  - 120
PB  - Springer Berlin Heidelberg
PP  - Berlin/Heidelberg
UR  - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-014-0062-9/
DO  - 10.1007/s10240-014-0062-9
LA  - en
ID  - PMIHES_2014__120__335_0
ER  - 
%0 Journal Article
%A Bernhard Hanke
%A Thomas Schick
%A Wolfgang Steimle
%T The space of metrics of positive scalar curvature
%J Publications Mathématiques de l'IHÉS
%D 2014
%P 335-367
%V 120
%I Springer Berlin Heidelberg
%C Berlin/Heidelberg
%U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-014-0062-9/
%R 10.1007/s10240-014-0062-9
%G en
%F PMIHES_2014__120__335_0
Bernhard Hanke; Thomas Schick; Wolfgang Steimle. The space of metrics of positive scalar curvature. Publications Mathématiques de l'IHÉS, Volume 120 (2014), pp. 335-367. doi: 10.1007/s10240-014-0062-9

[1.] K. Akutagawa; B. Botvinnik The relative Yamabe invariant, Commun. Anal. Geom., Volume 10 (2002), pp. 925-954 | Zbl

[2.] A. Besse Einstein Manifolds (1987) | Zbl

[3.] B. Botvinnik; B. Hanke; T. Schick; M. Walsh Homotopy groups of the moduli space of metrics of positive scalar curvature, Geom. Topol., Volume 14 (2010), pp. 2047-2076 | Zbl | DOI

[4.] A. J. Casson Fibrations over spheres, Topology, Volume 6 (1967), pp. 489-499 | Zbl | DOI

[5.] S.-S. Chern; F. Hirzebruch; J.-P. Serre On the index of a fibered manifold, Proc. Am. Math. Soc., Volume 8 (1957), pp. 587-596 | Zbl | DOI

[6.] D. Crowley; T. Schick The Gromoll filtration, KO-characteristic classes and metrics of positive scalar curvature, Geom. Topol., Volume 17 (2013), pp. 1773-1790 | Zbl | DOI

[7.] J. F. Davis Manifold aspects of the Novikov conjecture, Surveys of Surgery Theory (2000), pp. 195-224 | Zbl

[8.] T. Farrell The obstruction to fibering a manifold over a circle, Indiana Univ. Math. J., Volume 21 (1971/1972), pp. 315-346 | Zbl | DOI

[9.] T. Farrell; L. Jones A topological analogue of Mostow’s rigidity theorem, J. Am. Math. Soc., Volume 2 (1989), pp. 257-370 | Zbl

[10.] M. Gromov; H. B. Lawson The classification of simply connected manifolds of positive scalar curvature, Ann. Math. (2), Volume 111 (1980), pp. 423-434 | Zbl | DOI

[11.] M. Gromov; H. B. Lawson Positive scalar curvature and the Dirac operator on complete Riemannian manifolds, Publ. Math. IHES, Volume 58 (1983), pp. 295-408 | Numdam | Zbl | DOI

[12.] A. Hatcher Concordance spaces, higher simple homotopy theory, and applications, Algebraic and Geometric Topology, Stanford 1976 (1978), pp. 3-21 | Zbl

[13.] N. Hitchin Harmonic spinors, Adv. Math., Volume 14 (1974), pp. 1-55 | Zbl | DOI

[14.] K. Igusa The space of framed functions, Trans. Am. Math. Soc., Volume 301 (1987), pp. 431-477 | Zbl | DOI

[15.] K. Igusa The stability theorem for smooth pseudoisotopies, K-Theory, Volume 2 (1988), pp. 1-355 | Zbl | DOI

[16.] M. Kreck; S. Stolz Nonconnected moduli spaces of positive sectional curvature metrics, J. Am. Math. Soc., Volume 6 (1993), pp. 825-850 | Zbl | DOI

[17.] H. B. Lawson; M.-L. Michelsohn Spin Geometry (1989) | Zbl

[18.] R. Melrose The Atiyah-Patodi-Singer Index Theorem (1993) | Zbl

[19.] J. Milnor; J. Stasheff Characteristic Classes (1974) | Zbl

[20.] T. Schick A counterexample to the (unstable) Gromov-Lawson-Rosenberg conjecture, Topology, Volume 37 (1998), pp. 1165-1168 | Zbl | DOI

[21.] S. Stolz Simply connected manifolds of positive scalar curvature, Ann. Math., Volume 136 (1992), pp. 511-540 | Zbl | DOI

[22.] S. Stolz Positive scalar curvature metrics—existence and classification questions, Proc. Int. Cong. Math (1994), pp. 625-636 | Zbl

[23.] M. Walsh Metrics of positive scalar curvature and generalized Morse functions, part II, Trans. Am. Math. Soc., Volume 366 (2014), pp. 1-50 | Zbl | DOI

[24.] S. Weinberger On smooth surgery, Commun. Pure Appl. Math., Volume 43 (1990), pp. 695-696 | Zbl | DOI

Cited by Sources: