Sum of Lyapunov exponents of the Hodge bundle with respect to the Teichmüller geodesic flow
Publications Mathématiques de l'IHÉS, Volume 120 (2014), pp. 207-333
Received:
Accepted:
Online First:
Published online:
DOI: 10.1007/s10240-013-0060-3
Keywords: Modulus Space, Vector Bundle, Lyapunov Exponent, Quadratic Differential, Closed Geodesic

Alex Eskin 1; Maxim Kontsevich 2; Anton Zorich 3

1 Department of Mathematics, University of Chicago 60637 Chicago IL USA
2 IHES le Bois Marie, 35, route de Chartres 91440 Bures-sur-Yvette France
3 Institut de Mathématiques de Jussieu (Paris Rive Gauche), Université Paris 7 and IUF Bâtiment Sophie Germain, Case 7012 75205 Paris Cedex 13 France
@article{PMIHES_2014__120__207_0,
     author = {Alex Eskin and Maxim Kontsevich and Anton Zorich},
     title = {Sum of {Lyapunov} exponents of the {Hodge} bundle with respect to the {Teichm\"uller} geodesic flow},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {207--333},
     year = {2014},
     publisher = {Springer Berlin Heidelberg},
     address = {Berlin/Heidelberg},
     volume = {120},
     doi = {10.1007/s10240-013-0060-3},
     mrnumber = {3270590},
     zbl = {1305.32007},
     language = {en},
     url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-013-0060-3/}
}
TY  - JOUR
AU  - Alex Eskin
AU  - Maxim Kontsevich
AU  - Anton Zorich
TI  - Sum of Lyapunov exponents of the Hodge bundle with respect to the Teichmüller geodesic flow
JO  - Publications Mathématiques de l'IHÉS
PY  - 2014
SP  - 207
EP  - 333
VL  - 120
PB  - Springer Berlin Heidelberg
PP  - Berlin/Heidelberg
UR  - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-013-0060-3/
DO  - 10.1007/s10240-013-0060-3
LA  - en
ID  - PMIHES_2014__120__207_0
ER  - 
%0 Journal Article
%A Alex Eskin
%A Maxim Kontsevich
%A Anton Zorich
%T Sum of Lyapunov exponents of the Hodge bundle with respect to the Teichmüller geodesic flow
%J Publications Mathématiques de l'IHÉS
%D 2014
%P 207-333
%V 120
%I Springer Berlin Heidelberg
%C Berlin/Heidelberg
%U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-013-0060-3/
%R 10.1007/s10240-013-0060-3
%G en
%F PMIHES_2014__120__207_0
Alex Eskin; Maxim Kontsevich; Anton Zorich. Sum of Lyapunov exponents of the Hodge bundle with respect to the Teichmüller geodesic flow. Publications Mathématiques de l'IHÉS, Volume 120 (2014), pp. 207-333. doi: 10.1007/s10240-013-0060-3

[AtEZ] J. Athreya, A. Eskin, and A. Zorich, Right-angled billiards and volumes of moduli spaces of quadratic differentials on 𝐂P 1 , pp. 1–55, | arXiv

[Au1] D. Aulicino, Teichmüller discs with completely degenerate Kontsevich-Zorich spectrum, | arXiv

[Au2] D. Aulicino, Affine invariant submanifolds with completely degenerate Kontsevich-Zorich spectrum, | arXiv

[AvVi] A. Avila; M. Viana Simplicity of Lyapunov spectra: proof of the Zorich–Kontsevich conjecture, Acta Math., Volume 198 (2007), pp. 1-56 | Zbl | DOI

[AvMaY1] A. Avila; C. Matheus Santos; J.-C. Yoccoz SL-invariant probability measures on the moduli spaces of translation surfaces are regular, Geom. Funct. Anal. (2013)

[AvMaY2] A. Avila, C. Matheus Santos, and J.-C. Yoccoz, Work in progress.

[Ba1] M. Bainbridge Euler characteristics of Teichmüller curves in genus two, Geom. Topol., Volume 11 (2007), pp. 1887-2073 | Zbl | DOI

[Ba2] M. Bainbridge Billiards in L-shaped tables with barriers, Geom. Funct. Anal., Volume 20 (2010), pp. 299-356 | Zbl | DOI

[BeKzh] A. A. Belavin; V. G. Knizhnik Algebraic geometry and the geometry of quantum strings, Phys. Lett. B, Volume 168 (1986), pp. 201-206 | Zbl | DOI

[Br] L. Bers Spaces of degenerating Riemann surfaces, Discontinuous Groups and Riemann Surfaces, Proc. Conf. (1974), pp. 43-55 | Zbl

[BiBo] J.-M. Bismut; J.-B. Bost Fibrés déterminants, métriques de Quillen et dégénérescence des courbes, Acta Math., Volume 165 (1990), pp. 1-103 | Zbl | DOI

[BiGiSo1] J.-M. Bismut; H. Gillet; C. Soulé Analytic torsion and holomorphic determinant bundles. I. Bott-Chern forms and analytic torsion, Commun. Math. Phys., Volume 115 (1988), pp. 49-78 | Zbl | DOI

[BiGiSo2] J.-M. Bismut; H. Gillet; C. Soulé Analytic torsion and holomorphic determinant bundles. II. Direct images and Bott–Chern forms, Commun. Math. Phys., Volume 115 (1988), pp. 79-126 | Zbl | DOI

[BiGiSo3] J.-M. Bismut; H. Gillet; C. Soulé Analytic torsion and holomorphic determinant bundles. III. Quillen metrics and holomorphic determinants, Commun. Math. Phys., Volume 115 (1988), pp. 301-351 | Zbl | DOI

[BwMö] I. Bouw; M. Möller Teichmüller curves, triangle groups, and Lyapunov exponents, Ann. Math., Volume 172 (2010), pp. 139-185 | Zbl | DOI

[CaWn] K. Calta; K. Wortman On unipotent flows in (1,1), Ergod. Theory Dyn. Syst., Volume 30 (2010), pp. 379-398 | Zbl | DOI

[Ch] D. Chen Square-tiled surfaces and rigid curves on moduli spaces, Adv. Math., Volume 228 (2011), pp. 1135-1162 | Zbl | DOI

[ChMö] D. Chen; M. Möller Non-varying sums of Lyapunov exponents of Abelian differentials in low genus, Geom. Topol., Volume 16 (2012), pp. 2427-2479 | Zbl | DOI

[EM] A. Eskin; H. Masur Asymptotic formulas on flat surfaces, Ergod. Theory Dyn. Syst., Volume 21 (2001), pp. 443-478 | Zbl | DOI

[EMz] A. Eskin and M. Mirzakhani, Invariant and stationary measures for the SL(2,𝐑) action on moduli space, | arXiv

[EO] A. Eskin; A. Okounkov Asymptotics of number of branched coverings of a torus and volumes of moduli spaces of holomorphic differentials, Invent. Math., Volume 145 (2001), pp. 59-104 | Zbl | DOI

[EMSl] A. Eskin; H. Masur; M. Schmoll Billiards in rectangles with barriers, Duke Math. J., Volume 118 (2003), pp. 427-463 | Zbl | DOI

[EMZ] A. Eskin; H. Masur; A. Zorich Moduli spaces of Abelian differentials: the principal boundary, counting problems and the Siegel–Veech constants, Publ. Math. IHÉS, Volume 97 (2003), pp. 61-179 | Zbl | Numdam | DOI

[EMfMr] A. Eskin; J. Marklof; D. Morris Unipotent flows on the space of branched covers of Veech surfaces, Ergod. Theory Dyn. Syst., Volume 26 (2006), pp. 129-162 | Zbl | DOI

[EOPa] A. Eskin; A. Okounkov; R. Pandharipande The theta characteristic of a branched covering, Adv. Math., Volume 217 (2008), pp. 873-888 | Zbl | DOI

[EKZ] A. Eskin; M. Kontsevich; A. Zorich Lyapunov spectrum of square-tiled cyclic covers, J. Mod. Dyn., Volume 5 (2011), pp. 319-353 | Zbl | DOI

[EMzRf] A. Eskin, M. Mirzakhani, and K. Rafi, Counting closed geodesics in strata, | arXiv

[EMzMh] A. Eskin, M. Mirzakhani, and A. Mohammadi, Isolation, equidistribution, and orbit closures for the SL(2,𝐑) action on moduli space, | arXiv

[Fay] J. Fay Kernel functions, analytic torsion, and moduli spaces, Memoirs of the AMS (1992) | Zbl

[Fo1] G. Forni Deviation of ergodic averages for area-preserving flows on surfaces of higher genus, Ann. Math., Volume 155 (2002), pp. 1-103 | Zbl | DOI

[Fo2] G. Forni On the Lyapunov exponents of the Kontsevich-Zorich cocycle, Handbook of Dynamical Systems (2006), pp. 549-580 | Zbl

[Fo3] G. Forni A geometric criterion for the non-uniform hyperbolicity of the Kontsevich–Zorich cocycle, J. Mod. Dyn., Volume 5 (2011), pp. 355-395 | Zbl | DOI

[FoMa] G. Forni and C. Matheus, An example of a Teichmüller disk in genus 4 with degenerate Kontsevich–Zorich spectrum, pp. 1–8, | arXiv

[FoMaZ1] G. Forni; C. Matheus; A. Zorich Square-tiled cyclic covers, J. Mod. Dyn., Volume 5 (2011), pp. 285-318 | Zbl

[FoMaZ2] G. Forni; C. Matheus; A. Zorich Lyapunov spectra of covariantly constant subbundles of the Hodge bundle, Ergod. Theory Dyn. Syst. (2012)

[FoMaZ3] G. Forni, C. Matheus, and A. Zorich, Zero Lyapunov exponents of the Hodge bundle, Comment Math. Helv. | arXiv

[GriHt1] J. Grivaux and P. Hubert, Exposants de Lyapunov du flot de Teichmüller (d’après Eskin–Kontsevich–Zorich). Séminaire Nicolas Bourbaki, Octobre 2012, Astérisque, to appear.

[GriHt2] J. Grivaux and P. Hubert, Loci in strata of meromorphic differentials with fully degenerate Lyapunov spectrum, | arXiv | Zbl

[GruKr] S. Grushevsky; I. Krichever The universal Whitham hierarchy and geometry of the moduli space of pointed Riemann surfaces, Surveys in Differential Geometry, vol. XIV. Geometry of Riemann Surfaces and Their Moduli Spaces (2009), pp. 111-129 | Zbl

[GuJu] E. Gutkin; C. Judge Affine mappings of translation surfaces: geometry and arithmetic, Duke Math. J., Volume 103 (2000), pp. 191-213 | Zbl | DOI

[Hb] J. Hubbard, Teichmüller theory and applications to geometry, topology, and dynamics, Teichmüller theory, vol. 1. With contributions by Adrien Douady, William Dunbar, Roland Roeder, Sylvain Bonnot, David Brown, Allen Hatcher, Chris Hruska and Sudeb Mitra. With forewords by William Thurston and Clifford Earle. Matrix Editions, Ithaca, 2006. | Zbl

[HtLe] P. Hubert; S. Lelièvre Prime arithmetic Teichmüller discs in (2), Isr. J. Math., Volume 151 (2006), pp. 281-321 | Zbl | DOI

[JoLu] J. Jorgenson; R. Lundelius Continuity of relative hyperbolic spectral theory through metric degeneration, Duke Math. J., Volume 84 (1996), pp. 47-81 | Zbl | DOI

[KhHb] S. Koch and J. Hubbard, An analytic construction of the Deligne-Mumford compactification of the moduli space of curves, J. Differ. Geom. | arXiv

[Kk1] A. Kokotov On the asymptotics of determinant of Laplacian at the principal boundary of the principal stratum of the moduli space of Abelian differentials, Trans. Am. Math. Soc., Volume 364 (2012), pp. 5645-5671 | Zbl | DOI

[Kk2] A. Kokotov Polyhedral surfaces and determinant of Laplacian, Proc. Am. Math. Soc., Volume 141 (2013), pp. 725-735 | Zbl | DOI

[KkKt1] A. Kokotov; D. Korotkin Tau-functions on spaces of Abelian and quadratic differentials and determinants of Laplacians in Strebel metrics of finite volume, Preprint MPI Leipzig, Volume 46 (2004), pp. 1-48

[KkKt2] A. Kokotov; D. Korotkin Bergman tau-function: from random matrices and Frobenius manifolds to spaces of quadratic differentials, J. Phys. A, Volume 39 (2006), pp. 8997-9013 | Zbl | DOI

[KkKt3] A. Kokotov; D. Korotkin Tau-functions on spaces of Abelian differentials and higher genus generalization of Ray-Singer formula, J. Differ. Geom., Volume 82 (2009), pp. 35-100 | Zbl

[K] M. Kontsevich Lyapunov exponents and Hodge theory, The Mathematical Beauty of Physics, Saclay, 1996 (in Honor of C. Itzykson) (1997), pp. 318-332 | Zbl

[KZ1] M. Kontsevich and A. Zorich, Lyapunov exponents and Hodge theory, Preprint IHES M/97/13, pp. 1–16, | arXiv

[KZ2] M. Kontsevich; A. Zorich Connected components of the moduli spaces of Abelian differentials, Invent. Math., Volume 153 (2003), pp. 631-678 | Zbl | DOI

[KtZg] D. Korotkin; P. Zograf Tau function and moduli of differentials, Math. Res. Lett., Volume 18 (2011), pp. 447-458 | Zbl | DOI

[Kn] R. Krikorian, Déviations de moyennes ergodiques, flots de Teichmüller et cocycle de Kontsevich-Zorich (d’après Forni, Kontsevich, Zorich). Séminaire Bourbaki. Vol. 2003/2004. Astérisque, 299 (2005), Exp. No. 927, vii, 59–93. | Zbl | Numdam

[La1] E. Lanneau Hyperelliptic components of the moduli spaces of quadratic differentials with prescribed singularities, Comment. Math. Helv., Volume 79 (2004), pp. 471-501 | Zbl | DOI

[La2] E. Lanneau Connected components of the moduli spaces of quadratic differentials, Ann. Sci. Éc. Norm. Super., Volume 41 (2008), pp. 1-56 | Zbl | Numdam

[Le] S. Lelièvre Siegel-Veech constants in (2), Geom. Topol., Volume 10 (2006), pp. 1157-1172 | Zbl | DOI

[Lu] R. Lundelius Asymptotics of the determinant of the Laplacian on hyperbolic surfaces of finite volume, Duke Math. J., Volume 71 (1993), pp. 211-242 | Zbl | DOI

[Mk] B. Maskit Comparison of hyperbolic and extremal lengths, Ann. Acad. Sci. Fenn., Volume 10 (1985), pp. 381-386 | Zbl | DOI

[M1] H. Masur The extension of the Weil–Peterson metric to the boundary of Teichmüller space, Duke Math. J., Volume 43 (1976), pp. 623-635 | Zbl | DOI

[M2] H. Masur Interval exchange transformations and measured foliations, Ann. Math., Volume 115 (1982), pp. 169-200 | Zbl | DOI

[MSm] H. Masur; J. Smillie Quadratic differentials with prescribed singularities and pseudo-Anosov diffeomorphisms, Comment. Math. Helv., Volume 68 (1993), pp. 289-307 | Zbl

[MZ] H. Masur; A. Zorich Multiple saddle connections on flat surfaces and principal boundary of the moduli spaces of quadratic differentials, Geom. Funct. Anal., Volume 18 (2008), pp. 919-987 | Zbl | DOI

[Ma] C. Matheus Santos Appendix to the paper of G. Forni, a geometric criterion for the nonuniform hyperbolicity of the Kontsevich–Zorich cocycle, J. Mod. Dyn., Volume 4 (2010), pp. 453-486 | Zbl | DOI

[MaY] C. Matheus Santos; J.-C. Yoccoz The action of the affine diffeomorphisms on the relative homology group of certain exceptionally symmetric origamis, J. Mod. Dyn., Volume 5 (2011), pp. 386-395 | Zbl

[MaYZm] C. Matheus Santos, J.-C. Yoccoz, and D. Zmiaikou, Homology of origamis with symmetries, to appear in Ann. Inst. Fourier, 64 (2014), | arXiv | Numdam

[McITa] A. McIntyre; L. Takhtajan Holomorphic factorization of determinants of Laplacians on Riemann surfaces and a higher genus generalization of Kronecker’s first limit formula, Geom. Funct. Anal., Volume 16 (2006), pp. 1291-1323 | Zbl | DOI

[McM] C. McMullen Dynamics of SL(2,𝐑) over moduli space in genus two, Ann. Math., Volume 165 (2007), pp. 397-456 | Zbl | DOI

[Min] Y. Minsky Harmonic maps, length, and energy in Teichmüller space, J. Differ. Geom., Volume 35 (1992), pp. 151-217 | Zbl

[Mö] M. Möller Shimura- and Teichmüller curves, J. Mod. Dyn., Volume 5 (2011), pp. 1-32 | Zbl | DOI

[OsPhSk] B. Osgood; R. Phillips; P. Sarnak Extremals of determinants of Laplacians, J. Funct. Anal., Volume 80 (1988), pp. 148-211 | Zbl | DOI

[Pe] C. Peters A criterion for flatness of Hodge bundles over curves and geometric applications, Math. Ann., Volume 268 (1984), pp. 1-20 | Zbl | DOI

[Po1] A. Polyakov Quantum geometry of bosonic strings, Phys. Lett. B, Volume 103 (1981), pp. 207-210 | DOI

[Po2] A. Polyakov Quantum geometry of fermionic strings, Phys. Lett. B, Volume 103 (1981), pp. 211-213 | DOI

[Q] D. Quillen Determinants of Cauchy-Riemann operators over a Riemann surface, Funct. Anal. Appl., Volume 19 (1985), pp. 31-34 | Zbl | DOI

[Rf1] K. Rafi A characterization of short curves of a Teichmüller geodesic, Geom. Topol., Volume 9 (2005), pp. 179-202 | Zbl | DOI

[Rf2] K. Rafi Thick-thin decomposition for quadratic differentials, Math. Res. Lett., Volume 14 (2007), pp. 333-341 | Zbl | DOI

[Rf3] K. Rafi, Hyperbolicity in Teichmüller space, | arXiv

[RySi] D. Ray; I. Singer Analytic torsion for complex manifolds, Ann. Math., Volume 98 (1973), pp. 154-177 | Zbl | DOI

[Sm] J. Smillie, in preparation.

[So] C. Soulé, Lectures on Arakelov geometry. With the collaboration of D. Abramovich, J.-F. Burnol and J. Kramer. Cambridge Studies in Advanced Mathematics, vol. 33, Cambridge University Press, Cambridge, 1992. | Zbl

[TaZg] L. A. Takhtadzhyan; P. G. Zograf The geometry of moduli spaces of vector bundles over a Riemann surface, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 53 (1989), pp. 753-770 | Zbl

[Tr] R. Treviño On the non-uniform hyperbolicity of the Kontsevich-Zorich cocycle for quadratic differentials, Geom. Dedic., Volume 163 (2013), pp. 311-338 | Zbl | DOI

[Ve1] W. Veech Gauss measures for transformations on the space of interval exchange maps, Ann. Math., Volume 115 (1982), pp. 201-242 | Zbl | DOI

[Ve2] W. Veech Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards, Invent. Math., Volume 97 (1989), pp. 553-583 | Zbl | DOI

[Ve3] W. A. Veech Siegel measures, Ann. Math., Volume 148 (1998), pp. 895-944 | Zbl | DOI

[Vb] Ya. Vorobets Periodic geodesics on generic translation surfaces, Algebraic and Topological Dynamics (2005), pp. 205-258 | Zbl

[Wo1] S. Wolpert Asymptotics of the spectrum and the Selberg zeta function on the space of Riemann surfaces, Commun. Math. Phys., Volume 112 (1987), pp. 283-315 | Zbl | DOI

[Wo2] S. Wolpert The hyperbolic metric and the geometry of the universal curve, J. Differ. Geom., Volume 31 (1990), pp. 417-472 | Zbl

[Wo3] S. Wolpert Geometry of the Weil–Petersson completion of Teichmüller space, Surveys in Differential Geometry (2003), pp. 357-393 | Zbl

[Wr1] A. Wright Schwarz triangle mappings and Teichmüller curves: Abelian square-tiled surfaces, J. Mod. Dyn., Volume 6 (2012), pp. 405-426 | Zbl | DOI

[Wr2] A. Wright Schwarz triangle mappings and Teichmüller curves: the Veech–Ward–Bouw–Möller curves, Geom. Funct. Anal., Volume 23 (2013), pp. 776-809 | Zbl | DOI

[Z] A. Zorich Square tiled surfaces and Teichmüller volumes of the moduli spaces of Abelian differentials, Rigidity in Dynamics and Geometry. Contributions from the Programme Ergodic Theory, Geometric Rigidity and Number Theory (2002), pp. 459-471 | Zbl

Cited by Sources: