A category of kernels for equivariant factorizations and its implications for Hodge theory
Publications Mathématiques de l'IHÉS, Volume 120 (2014), pp. 1-111

We provide a factorization model for the continuous internal Hom, in the homotopy category of k-linear dg-categories, between dg-categories of equivariant factorizations. This motivates a notion, similar to that of Kuznetsov, which we call the extended Hochschild cohomology algebra of the category of equivariant factorizations. In some cases of geometric interest, extended Hochschild cohomology contains Hochschild cohomology as a subalgebra and Hochschild homology as a homogeneous component. We use our factorization model for the internal Hom to calculate the extended Hochschild cohomology for equivariant factorizations on affine space.

Combining the computation of extended Hochschild cohomology with the Hochschild-Kostant-Rosenberg isomorphism and a theorem of Orlov recovers and extends Griffiths’ classical description of the primitive cohomology of a smooth, complex projective hypersurface in terms of homogeneous pieces of the Jacobian algebra. In the process, the primitive cohomology is identified with the fixed subspace of the cohomological endomorphism associated to an interesting endofunctor of the bounded derived category of coherent sheaves on the hypersurface. We also demonstrate how to understand the whole Jacobian algebra as morphisms between kernels of endofunctors of the derived category.

Finally, we present a bootstrap method for producing algebraic cycles in categories of equivariant factorizations. As proof of concept, we show how this reproves the Hodge conjecture for all self-products of a particular K3 surface closely related to the Fermat cubic fourfold.

Received:
Accepted:
Online First:
Published online:
DOI: 10.1007/s10240-013-0059-9
Keywords: Algebraic Group, equivariant factorization, Triangulate Category, Homotopy Category, Hochschild Cohomology

Matthew Ballard 1, 2; David Favero 2; Ludmil Katzarkov 3

1 Department of Mathematics, University of Wisconsin-Madison Madison WI USA
2 Fakultät für Mathematik, Universität von Wien Viena Austria
3 Department of Mathematics, University of Miami Coral Gables FL USA
@article{PMIHES_2014__120__1_0,
     author = {Matthew Ballard and David Favero and Ludmil Katzarkov},
     title = {A category of kernels for equivariant factorizations and its implications for {Hodge} theory},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {1--111},
     year = {2014},
     publisher = {Springer Berlin Heidelberg},
     address = {Berlin/Heidelberg},
     volume = {120},
     doi = {10.1007/s10240-013-0059-9},
     mrnumber = {3270588},
     zbl = {1401.14086},
     language = {en},
     url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-013-0059-9/}
}
TY  - JOUR
AU  - Matthew Ballard
AU  - David Favero
AU  - Ludmil Katzarkov
TI  - A category of kernels for equivariant factorizations and its implications for Hodge theory
JO  - Publications Mathématiques de l'IHÉS
PY  - 2014
SP  - 1
EP  - 111
VL  - 120
PB  - Springer Berlin Heidelberg
PP  - Berlin/Heidelberg
UR  - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-013-0059-9/
DO  - 10.1007/s10240-013-0059-9
LA  - en
ID  - PMIHES_2014__120__1_0
ER  - 
%0 Journal Article
%A Matthew Ballard
%A David Favero
%A Ludmil Katzarkov
%T A category of kernels for equivariant factorizations and its implications for Hodge theory
%J Publications Mathématiques de l'IHÉS
%D 2014
%P 1-111
%V 120
%I Springer Berlin Heidelberg
%C Berlin/Heidelberg
%U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-013-0059-9/
%R 10.1007/s10240-013-0059-9
%G en
%F PMIHES_2014__120__1_0
Matthew Ballard; David Favero; Ludmil Katzarkov. A category of kernels for equivariant factorizations and its implications for Hodge theory. Publications Mathématiques de l'IHÉS, Volume 120 (2014), pp. 1-111. doi: 10.1007/s10240-013-0059-9

[Ana73] S. Anantharaman Schémas en groupes, espaces homogẽnes et espaces algébriques sur une base de dimension 1. Sur les groupes algébriques (1973), pp. 5-79 | MR | Zbl | Numdam

[Aok83] N. Aoki On some arithmetic problems related to the Hodge cycles on the Fermat varieties, Math. Ann., Volume 266 (1983), pp. 23-54 | MR | Zbl | DOI

[BFK11] M. Ballard; D. Favero; L. Katzarkov Orlov spectra: bounds and gaps, Invent. Math., Volume 189 (2012), pp. 359-430 | MR | Zbl | DOI

[BDFIK12] M. Ballard, D. Deliu, D. Favero, M. U. Isik, and L. Katzarkov, Resolutions in factorization categories, | arXiv

[BFK12] M. Ballard, D. Favero, and L. Katzarkov, Variation of geometric invariant theory quotients and derived categories, | arXiv

[BFK13] M. Ballard, D. Favero, and L. Katzarkov, A category of kernels for equivariant factorizations, II: further implications, preprint. | MR

[Bec12] H. Becker, Models for singularity categories, | arXiv

[BFN10] D. Ben-Zvi; J. Francis; D. Nadler Integral transforms and Drinfeld centers in derived algebraic geometry, J. Am. Math. Soc., Volume 23 (2010), pp. 909-966 | MR | Zbl | DOI

[Bla12] A. Blanc, Topological K-theory and its Chern character for non-commutative spaces, | arXiv

[Blu07] M. Blume, McKay Correspondence and G-Hilbert Schemes, Ph.D. thesis, Tübingen, 2007. Currently available at http://tobias-lib.uni-tuebingen.de/volltexte/2007/2941/pdf/diss.pdf.

[BV03] A. Bondal; M. Van den Bergh Generators and representability of functors in commutative and non-commutative geometry, Mosc. Math. J., Volume 3 (2003), pp. 1-36 | MR | Zbl

[Buc86] R.-O. Buchweitz, Maximal Cohen-Macaulay modules and Tate-cohomology over Gorenstein rings, preprint (1986).

[Cal05] A. Căldăraru The Mukai pairing, II: the Hochschild-Kostant-Rosenberg isomorphism, Adv. Math., Volume 194 (2005), pp. 34-66 | MR | Zbl | DOI

[CT10] A. Căldăraru and J. Tu, Curved A algebras and Landau-Ginzburg models, | arXiv | Zbl

[CS10] A. Canonaco; P. Stellari Non-uniqueness of Fourier-Mukai kernels, Math. Z., Volume 272 (2012), pp. 577-588 | MR | Zbl | DOI

[DeGa70] M. Demazure and P. Gabriel, Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs. (French) Avec un appendice Corps de classes local par Michiel Hazewinkel. Masson & Cie, Éditeur, Paris; North-Holland Publishing Co., Amsterdam, 1970. | MR | Zbl

[Dri04] V. Drinfeld DG quotients of DG categories, J. Algebra, Volume 272 (2004), pp. 643-691 | MR | Zbl | DOI

[Dyc11] T. Dyckerhoff Compact generators in categories of matrix factorizations, Duke Math. J., Volume 159 (2011), pp. 223-274 | MR | Zbl | DOI

[DM12] T. Dyckerhoff; D. Murfet The Kapustin-Li formula revisited, Adv. Math., Volume 231 (2012), pp. 1858-1885 | MR | Zbl | DOI

[Eis80] D. Eisenbud Homological algebra on a complete intersection, with an application to group representations, Trans. Am. Math. Soc., Volume 260 (1980), pp. 35-64 | MR | Zbl | DOI

[Ela11] A. Elagin Cohomological descent theory for a morphism of stacks and for equivariant derived categories, Mat. Sb., Volume 202 (2011), pp. 31-64 | MR | Zbl | DOI

[FJR07] H. Fan; T. Jarvis; Y. Ruan The Witten equation, mirror symmetry and quantum singularity theory, Ann. Math., Volume 178 (2013), pp. 1-106 | MR | Zbl | DOI

[FHT01] Y. Félix; S. Halperin; J.-C. Thomas Rational Homotopy Theory (2001) | MR | Zbl

[Gri69] P. Griffiths On the periods of certain rational integrals, Ann. Math., Volume 90 (1969), pp. 460-541 | MR | Zbl | DOI

[EGA IV.2] A. Grothendieck Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. II (1965) | MR | Zbl | Numdam

[HKR62] G. Hochschild; B. Kostant; A. Rosenberg Differential forms on regular affine algebras, Trans. Am. Math. Soc., Volume 102 (1962), pp. 383-408 | MR | Zbl | DOI

[HLOY04] S. Hosono; B. Lian; K. Oguiso; S.-T. Yau Fourier-Mukai number of a K3 surface, Algebraic Structures and Moduli Spaces (2004), pp. 177-192 | MR | Zbl

[Huy05] D. Huybrechts Fourier-Mukai Transforms in Algebraic Geometry (2006) | MR | Zbl

[Ill71] L. Illusie, Existence de résolutions globales, in Théorie des intersections et théorème de Riemann-Roch. Séminaire de Géométrie Algébrique du Bois-Marie 1966–1967 (SGA 6). Dirigé par P. Berthelot, A. Grothendieck et L. Illusie. Avec la collaboration de D. Ferrand, J. P. Jouanolou, O. Jussila, S. Kleiman, M. Raynaud et J. P. Serre. Lecture Notes in Mathematics, vol. 225. Springer, Berlin, 1971. | MR | Zbl

[KL03a] A. Kapustin; Y. Li D-branes in Landau-Ginzburg models and algebraic geometry, J. High Energy Phys., Volume 5 (2003) | MR

[KL03b] A. Kapustin; Y. Li Topological correlators in Landau-Ginzburg models with boundaries, Adv. Theor. Math. Phys., Volume 7 (2003), pp. 727-749 | MR | Zbl | DOI

[KKP08] L. Katzarkov; M. Kontsevich; T. Pantev Hodge theoretic aspects of mirror symmetry, From Hodge Theory to Integrability and TQFT tt -Geometry (2008), pp. 87-174 | MR | Zbl

[Kel06] B. Keller On differential graded categories, International Congress of Mathematicians, vol. II (2006), pp. 151-190 | MR | Zbl

[KR08a] M. Khovanov; L. Rozansky Matrix factorizations and link homology, Fundam. Math., Volume 199 (2008), pp. 1-91 | MR | Zbl | DOI

[KR08b] M. Khovanov; L. Rozansky Matrix factorizations and link homology. II, Geom. Topol., Volume 12 (2008), pp. 1387-1425 | MR | Zbl | DOI

[Kon03] M. Kontsevich Deformation quantization of Poisson manifolds, I, Lett. Math. Phys., Volume 66 (2003), pp. 157-216 | MR | Zbl | DOI

[Kra05] H. Krause The stable derived category of a Noetherian scheme, Compos. Math., Volume 141 (2005), pp. 1128-1162 | MR | Zbl | DOI

[Kuz10] A. Kuznetsov Derived categories of cubic fourfolds. Cohomological and geometric approaches to rationality problems (2010), pp. 219-243 | MR | Zbl

[Kuz11] A. Kuznetsov Base change for semiorthogonal decompositions, Compos. Math., Volume 147 (2011), pp. 852-876 | MR | Zbl | DOI

[Kuz09] A. Kuznetsov, Hochschild homology and semiorthogonal decompositions, | arXiv

[LP11] K. Lin and D. Pomerleano, Global matrix factorizations, | arXiv | Zbl

[Mar01] N. Markarian, Poincaré-Birkhoff-Witt isomorphism, Hochschild homology and Riemann-Roch theorem, MPI 2001-52 preprint (2001). Currently available at http://www.mpim-bonn.mpg.de/preblob/1208.

[MFK94] D. Mumford; J. Fogarty; F. Kirwan Geometric Invariant Theory (1994) | MR | Zbl

[Mur09] D. Murfet, Residues and duality for singularity categories of isolated Gorenstein singularities, | arXiv

[Nee92] A. Neeman The connection between the K-theory localization theorem of Thomason, Trobaugh and Yao and the smashing subcategories of Bousfield and Ravenel, Ann. Sci. Éc. Norm. Super., Volume 25 (1992), pp. 547-566 | MR | Zbl | Numdam

[Orl04] D. Orlov Triangulated categories of singularities and D-branes in Landau-Ginzburg models, Tr. Mat. Inst. Steklova, Volume 246 (2004), pp. 240-262 | MR | Zbl

[Orl06] D. Orlov Triangulated categories of singularities, and equivalences between Landau-Ginzburg models, Mat. Sb., Volume 197 (2006), pp. 117-132 | MR | Zbl | DOI

[Orl09] D. Orlov Derived categories of coherent sheaves and triangulated categories of singularities, Algebra, Arithmetic, and Geometry: In Honor of Yu. I. Manin, vol. II (2009), pp. 503-531 | MR | Zbl

[Orl11] D. Orlov Formal completions and idempotent completions of triangulated categories of singularities, Adv. Math., Volume 226 (2011), pp. 206-217 | MR | Zbl | DOI

[Orl12] D. Orlov Matrix factorizations for nonaffine LG-models, Math. Ann., Volume 353 (2012), pp. 95-108 | MR | Zbl | DOI

[PV12] A. Polishchuk; A. Vaintrob Chern characters and Hirzebruch-Riemann-Roch formula for matrix factorizations, Duke Math. J., Volume 161 (2012), pp. 1863-1926 | MR | Zbl | DOI

[PV10] A. Polishchuk and A. Vaintrob, Matrix factorizations and singularity categories for stacks, | arXiv | Zbl | Numdam

[PV11] A. Polishchuk and A. Vaintrob, Matrix factorizations and cohomological field theories, | arXiv

[Pos09] L. Positselski, Two kinds of derived categories, Koszul duality, and comodule-contramodule correspondence, | arXiv | Zbl

[Pos11] L. Positselski, Coherent analogues of matrix factorizations and relative singularity categories, | arXiv

[Pre11] A. Preygel, Thom-Sebastiani and duality for matrix factorizations, | arXiv

[Ram10] A. Ramadoss The Mukai pairing and integral transforms in Hochschild homology, Mosc. Math. J., Volume 10 (2010), pp. 629-645 | MR | Zbl

[RM08] J. J. Ramón Marí On the Hodge conjecture for products of certain surfaces, Collect. Math., Volume 59 (2008), pp. 1-26 | MR | Zbl | DOI

[Ran80] Z. Ran Cycles on Fermat hypersurfaces, Compos. Math., Volume 42 (1980/81), pp. 121-142 | MR | Zbl | Numdam

[Rou08] R. Rouquier Dimensions of triangulated categories, J. K-Theory, Volume 1 (2008), pp. 193-256 | MR | Zbl | DOI

[Seg09] E. Segal, The closed state space of affine Landau-Ginzburg B-models, | arXiv | Zbl

[Shi79] T. Shioda The Hodge conjecture and the Tate conjecture for Fermat varieties, Proc. Jpn. Acad., Ser. A, Math. Sci., Volume 55 (1979), pp. 111-114 | MR | Zbl | DOI

[Shk07] D. Shklyarov, Hirzebruch-Riemman-Roch for DG algebras, | arXiv

[Swa96] R. Swan Hochschild cohomology of quasiprojective schemes, J. Pure Appl. Algebra, Volume 110 (1996), pp. 57-80 | MR | Zbl | DOI

[Tho97] R. W. Thomason Equivariant resolution, linearization, and Hilbert’s fourteenth problem over arbitrary base schemes, Adv. Math., Volume 65 (1987), pp. 16-34 | MR | Zbl | DOI

[Toë07] B. Toën The homotopy theory of dg-categories and derived Morita theory, Invent. Math., Volume 167 (2007), pp. 615-667 | MR | Zbl | DOI

[Tot04] B. Totaro The resolution property for schemes and stacks, J. Reine Angew. Math., Volume 577 (2004), pp. 1-22 | MR | Zbl | DOI

[Tu10] J. Tu, Matrix factorizations via Koszul duality, | arXiv | Zbl

[Vaf91] C. Vafa Topological Landau-Ginzburg models, Mod. Phys. Lett. A, Volume 6 (1991), pp. 337-346 | MR | Zbl | DOI

[Wat79] W. Waterhouse Introduction to Affine Group Schemes (1979) | MR | Zbl

[Yek02] A. Yekutieli The continuous Hochschild cochain complex of a scheme, Can. J. Math., Volume 54 (2002), pp. 1319-1337 | MR | Zbl | DOI

Cited by Sources: