On the inverse spectral problem for the quasi-periodic Schrödinger equation
Publications Mathématiques de l'IHÉS, Volume 119 (2014), pp. 217-401

We study the quasi-periodic Schrödinger equation

-ψ '' (x)+V(x)ψ(x)=Eψ(x),x𝐑
in the regime of “small” V . Let (E m ' ,E m '' ), m 𝐙 ν , be the standard labeled gaps in the spectrum. Our main result says that if ∈ E m '' -E m ' εexp(-κ 0 |m|) for all m 𝐙 ν , with ε being small enough, depending on κ0>0 and the frequency vector involved, then the Fourier coefficients of V obey |c(m)|ε 1/2 exp(-κ 0 2|m|) for all m 𝐙 ν . On the other hand we prove that if |c(m)|≤εexp(−κ0|m|) with ε being small enough, depending on κ0>0 and the frequency vector involved, then E m '' -E m ' 2εexp(-κ 0 2|m|).

Received:
Accepted:
Online First:
Published online:
DOI: 10.1007/s10240-013-0058-x
Keywords: Implicit Function Theorem, Inductive Assumption, Simple Eigenvalue, Principal Point, Inverse Spectral Problem

David Damanik 1; Michael Goldstein 2

1 Department of Mathematics, Rice University 6100 S. Main St. 77005-1892 Houston TX USA
2 Department of Mathematics, University of Toronto Bahen Centre, 40 St. George St. M5S 2E4 Toronto Ontario Canada
@article{PMIHES_2014__119__217_0,
     author = {David Damanik and Michael Goldstein},
     title = {On the inverse spectral problem for the quasi-periodic {Schr\"odinger} equation},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {217--401},
     year = {2014},
     publisher = {Springer Berlin Heidelberg},
     address = {Berlin/Heidelberg},
     volume = {119},
     doi = {10.1007/s10240-013-0058-x},
     mrnumber = {3210179},
     zbl = {1296.35168},
     language = {en},
     url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-013-0058-x/}
}
TY  - JOUR
AU  - David Damanik
AU  - Michael Goldstein
TI  - On the inverse spectral problem for the quasi-periodic Schrödinger equation
JO  - Publications Mathématiques de l'IHÉS
PY  - 2014
SP  - 217
EP  - 401
VL  - 119
PB  - Springer Berlin Heidelberg
PP  - Berlin/Heidelberg
UR  - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-013-0058-x/
DO  - 10.1007/s10240-013-0058-x
LA  - en
ID  - PMIHES_2014__119__217_0
ER  - 
%0 Journal Article
%A David Damanik
%A Michael Goldstein
%T On the inverse spectral problem for the quasi-periodic Schrödinger equation
%J Publications Mathématiques de l'IHÉS
%D 2014
%P 217-401
%V 119
%I Springer Berlin Heidelberg
%C Berlin/Heidelberg
%U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-013-0058-x/
%R 10.1007/s10240-013-0058-x
%G en
%F PMIHES_2014__119__217_0
David Damanik; Michael Goldstein. On the inverse spectral problem for the quasi-periodic Schrödinger equation. Publications Mathématiques de l'IHÉS, Volume 119 (2014), pp. 217-401. doi: 10.1007/s10240-013-0058-x

[Av1] A. Avila, Global theory of one-frequency Schrödinger operators I: stratified analyticity of the Lyapunov exponent and the boundary of nonuniform hyperbolicity, preprint (2009), | arXiv

[Av2] A. Avila, Global theory of one-frequency Schrödinger operators II: acriticality and finiteness of phase transitions for typical potentials, preprint. | MR

[Av3] A. Avila, Almost reducibility and absolute continuity I, preprint (2010), | arXiv

[Bo] J. Bourgain Green’s Function Estimates for Lattice Schrödinger Operators and Applications (2004) | MR | Zbl

[BoJi] J. Bourgain; S. Jitomirskaya Absolutely continuous spectrum for 1D quasi-periodic operators, Invent. Math., Volume 148 (2002), pp. 453-463 | MR | Zbl | DOI

[DiSi] E. I. Dinaburg; Y. G. Sinai The one dimensional Schrödinger equation with quasiperiodic potential, Funkc. Anal. Prilozh., Volume 9 (1975), pp. 8-21 | Zbl

[DG] D. Damanik and M. Goldstein, On the existence and uniqueness of global solutions of the KdV equation with quasi-periodic initial data, preprint (2012), | arXiv

[El] H. Eliasson Floquet solutions for the 1-dimensional quasiperiodic Schrödinger equation, Commun. Math. Phys., Volume 146 (1992), pp. 447-482 | Zbl | DOI

[EK] H. Eliasson; S. Kuksin KAM for the non-linear Schrödinger equation, Ann. Math., Volume 172 (2010), pp. 371-435 | Zbl | DOI

[FrSp] J. Fröhlich; T. Spencer Absence of diffusion in the Anderson tight binding model for large disorder or low energy, Commun. Math. Phys., Volume 88 (1983), pp. 151-189 | Zbl | DOI

[FSW] J. Fröhlich; T. Spencer; P. Wittwer Localization for a class of one dimensional quasi-periodic Schrödinger operators, Commun. Math. Phys., Volume 132 (1990), pp. 5-25 | Zbl | DOI

[HA] S. Hadj Amor Hölder continuity of the rotation number for quasi-periodic co-cycles in SL(2,R), Commun. Math. Phys., Volume 287 (2009), pp. 565-588 | Zbl | DOI

[Lax] P. Lax Integrals of non-linear equations of evolution and solitary waves, Commun. Pure Appl. Math., Volume 21 (1968), pp. 467-490 | Zbl | DOI

Cited by Sources: