Affine Mirković-Vilonen polytopes
Publications Mathématiques de l'IHÉS, Volume 120 (2014), pp. 113-205

Each integrable lowest weight representation of a symmetrizable Kac-Moody Lie algebra 𝔤 has a crystal in the sense of Kashiwara, which describes its combinatorial properties. For a given 𝔤, there is a limit crystal, usually denoted by B(−∞), which contains all the other crystals. When 𝔤 is finite dimensional, a convex polytope, called the Mirković-Vilonen polytope, can be associated to each element in B(−∞). This polytope sits in the dual space of a Cartan subalgebra of 𝔤, and its edges are parallel to the roots of 𝔤. In this paper, we generalize this construction to the case where 𝔤 is a symmetric affine Kac-Moody algebra. The datum of the polytope must however be complemented by partitions attached to the edges parallel to the imaginary root δ. We prove that these decorated polytopes are characterized by conditions on their normal fans and on their 2-faces. In addition, we discuss how our polytopes provide an analog of the notion of Lusztig datum for affine Kac-Moody algebras. Our main tool is an algebro-geometric model for B(−∞) constructed by Lusztig and by Kashiwara and Saito, based on representations of the completed preprojective algebra Λ of the same type as 𝔤. The underlying polytopes in our construction are described with the help of Buan, Iyama, Reiten and Scott’s tilting theory for the category Λ- mod . The partitions we need come from studying the category of semistable Λ-modules of dimension-vector a multiple of δ.

Received:
Accepted:
Online First:
Published online:
DOI: 10.1007/s10240-013-0057-y
Keywords: Irreducible Component, Simple Object, Torsion Pair, Convex Order, Jordan Type

Pierre Baumann 1; Joel Kamnitzer 2; Peter Tingley 3

1 Institut de Recherche Mathématique Avancée, Université de Strasbourg et CNRS 7 rue René Descartes 67084 Strasbourg Cedex France
2 Department of Mathematics, University of Toronto M5S 2E4 Toronto ON Canada
3 Department of Mathematics and Statistics, Loyola University Chicago 1032 W. Sheridan Road 60660 Chicago IL USA
@article{PMIHES_2014__120__113_0,
     author = {Pierre Baumann and Joel Kamnitzer and Peter Tingley},
     title = {Affine {Mirkovi\'c-Vilonen} polytopes},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {113--205},
     year = {2014},
     publisher = {Springer Berlin Heidelberg},
     address = {Berlin/Heidelberg},
     volume = {120},
     doi = {10.1007/s10240-013-0057-y},
     mrnumber = {3270589},
     zbl = {1332.17012},
     language = {en},
     url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-013-0057-y/}
}
TY  - JOUR
AU  - Pierre Baumann
AU  - Joel Kamnitzer
AU  - Peter Tingley
TI  - Affine Mirković-Vilonen polytopes
JO  - Publications Mathématiques de l'IHÉS
PY  - 2014
SP  - 113
EP  - 205
VL  - 120
PB  - Springer Berlin Heidelberg
PP  - Berlin/Heidelberg
UR  - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-013-0057-y/
DO  - 10.1007/s10240-013-0057-y
LA  - en
ID  - PMIHES_2014__120__113_0
ER  - 
%0 Journal Article
%A Pierre Baumann
%A Joel Kamnitzer
%A Peter Tingley
%T Affine Mirković-Vilonen polytopes
%J Publications Mathématiques de l'IHÉS
%D 2014
%P 113-205
%V 120
%I Springer Berlin Heidelberg
%C Berlin/Heidelberg
%U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-013-0057-y/
%R 10.1007/s10240-013-0057-y
%G en
%F PMIHES_2014__120__113_0
Pierre Baumann; Joel Kamnitzer; Peter Tingley. Affine Mirković-Vilonen polytopes. Publications Mathématiques de l'IHÉS, Volume 120 (2014), pp. 113-205. doi: 10.1007/s10240-013-0057-y

[1.] C. Amiot; O. Iyama; I. Reiten; G. Todorov Preprojective algebras and c-sortable words, Proc. Lond. Math. Soc. (3), Volume 104 (2012), pp. 513-539 | MR | Zbl | DOI

[2.] J. E. Anderson A polytope calculus for semisimple groups, Duke Math. J., Volume 116 (2003), pp. 567-588 | MR | Zbl | DOI

[3.] I. Assem et al. Tilting theory – an introduction, Topics in Algebra, Part 1 (1990), pp. 127-180 | MR | Zbl

[4.] P. Baumann; J. Kamnitzer Preprojective algebras and MV polytopes, Represent. Theory, Volume 16 (2012), pp. 152-188 | MR | Zbl | DOI

[5.] P. Baumann, T. Dunlap, J. Kamnitzer and P. Tingley, Rank 2 affine MV polytopes, Represent. Theory, to appear. | MR | Zbl

[6.] J. Beck Convex bases of PBW type for quantum affine algebras, Commun. Math. Phys., Volume 165 (1994), pp. 193-199 | MR | Zbl | DOI

[7.] J. Beck; H. Nakajima Crystal bases and two-sided cells of quantum affine algebras, Duke Math. J., Volume 123 (2004), pp. 335-402 | MR | Zbl

[8.] J. Beck; V. Chari; A. Pressley An algebraic characterization of the affine canonical basis, Duke Math. J., Volume 99 (1999), pp. 455-487 | MR | Zbl | DOI

[9.] A. Berenstein; A. Zelevinsky Tensor product multiplicities, canonical bases and totally positive varieties, Invent. Math., Volume 143 (2001), pp. 77-128 | MR | Zbl | DOI

[10.] N. Bourbaki Groupes et Algèbres de Lie (1968)

[11.] A. Braverman; D. Gaitsgory Crystals via the affine Grassmannian, Duke Math. J., Volume 107 (2001), pp. 561-575 | MR | Zbl | DOI

[12.] A. Braverman; M. Finkelberg; D. Gaitsgory Uhlenbeck Spaces Via Affine Lie Algebra. The Unity of Mathematics (2006), pp. 17-135 | MR | Zbl

[13.] T. Bridgeland et al. Spaces of stability conditions, Algebraic Geometry (2009), pp. 1-21 | MR | Zbl

[14.] A. B. Buan; O. Iyama; I. Reiten; J. Scott Cluster structures for 2-Calabi-Yau categories and unipotent groups, Compos. Math., Volume 145 (2009), pp. 1035-1079 | MR | Zbl | DOI

[15.] P. Cellini; P. Papi The structure of total reflection orders in affine root systems, J. Algebra, Volume 205 (1998), pp. 207-226 | MR | Zbl | DOI

[16.] W. Crawley-Boevey, Lectures on Representations of Quivers, Lecture Notes for a Course Given in Oxford in Spring 1992, available at http://www.amsta.leeds.ac.uk/~pmtwc/.

[17.] W. Crawley-Boevey On the exceptional fibres of Kleinian singularities, Am. J. Math., Volume 122 (2000), pp. 1027-1037 | MR | Zbl | DOI

[18.] W. Crawley-Boevey; J. Schröer Irreducible components of varieties of modules, J. Reine Angew. Math., Volume 553 (2002), pp. 201-220 | MR | Zbl

[19.] T. Dunlap, Combinatorial Representation Theory of Affine𝔰𝔩 2 via Polytope Calculus, PhD thesis, Northwestern University, 2010. | MR

[20.] I. Frenkel; A. Malkin; M. Vybornov Affine Lie algebras and tame quivers, Sel. Math. New Ser., Volume 7 (2001), pp. 1-56 | MR | Zbl | DOI

[21.] I. Frenkel; A. Savage Bases of representations of type A affine Lie algebras via quiver varieties and statistical mechanics, Int. Math. Res. Not., Volume 2003 (2003), pp. 1521-1547 | MR | Zbl | DOI

[22.] P. Gabriel; A. V. Roiter Representations of finite-dimensional algebras, Algebra VIII (1992) | MR

[23.] S. Gaussent; P. Littelmann LS galleries, the path model, and MV cycles, Duke Math. J., Volume 127 (2005), pp. 35-88 | MR | Zbl | DOI

[24.] I. M. Gelfand; R. M. Goresky; R. D. MacPherson; V. V. Serganova Combinatorial geometries, convex polyhedra, and Schubert cells, Adv. Math., Volume 63 (1987), pp. 301-316 | MR | Zbl | DOI

[25.] C. Geiß; B. Leclerc; J. Schröer Rigid modules over preprojective algebras, Invent. Math., Volume 165 (2006), pp. 589-632 | MR | Zbl | DOI

[26.] C. Geiß; B. Leclerc; J. Schröer Semicanonical basis and preprojective algebras. II: A multiplication formula, Compos. Math., Volume 143 (2007), pp. 1313-1334 | MR | Zbl

[27.] C. Geiß; B. Leclerc; J. Schröer Kac-Moody groups and cluster algebras, Adv. Math., Volume 228 (2011), pp. 329-433 | MR | Zbl | DOI

[28.] K. Ito The classification of convex orders on affine root systems, Commun. Algebra, Volume 29 (2001), pp. 5605-5630 | MR | Zbl | DOI

[29.] K. Ito Parametrizations of infinite biconvex sets in affine root systems, Hiroshima Math. J., Volume 35 (2005), pp. 425-451 | MR | Zbl

[30.] K. Ito A new description of convex bases of PBW type for untwisted quantum affine algebras, Hiroshima Math. J., Volume 40 (2010), pp. 133-183 | MR | Zbl

[31.] O. Iyama; I. Reiten Fomin-Zelevinsky mutation and tilting modules over Calabi-Yau algebras, Am. J. Math., Volume 130 (2008), pp. 1087-1149 | MR | Zbl | DOI

[32.] O. Iyama; I. Reiten 2-Auslander algebras associated with reduced words in Coxeter groups, Int. Math. Res. Not., Volume 2011 (2011), pp. 1782-1803 | MR | Zbl

[33.] Y. Jiang, Parametrizations of canonical bases and irreducible components of nilpotent varieties, Int. Math. Res. Not., to appear. | MR

[34.] V. G. Kac Infinite Dimensional Lie Algebras (1990) | MR | Zbl

[35.] J. Kamnitzer The crystal structure on the set of Mirković-Vilonen polytopes, Adv. Math., Volume 215 (2007), pp. 66-93 | MR | Zbl | DOI

[36.] J. Kamnitzer Mirković-Vilonen cycles and polytopes, Ann. Math., Volume 171 (2010), pp. 245-294 | MR | Zbl | DOI

[37.] M. Kashiwara On crystal bases, Representations of Groups (1995), pp. 155-197 | MR | Zbl

[38.] M. Kashiwara; Y. Saito Geometric construction of crystal bases, Duke Math. J., Volume 89 (1997), pp. 9-36 | MR | Zbl | DOI

[39.] Y. Kimura, Affine Quivers and Crystal Bases, Master thesis, University of Kyoto, Japan, 2007.

[40.] A. King Moduli of representations of finite dimensional algebras, Q. J. Math. Oxf. (2), Volume 45 (1994), pp. 515-530 | MR | Zbl | DOI

[41.] G. Lusztig Canonical bases arising from quantized enveloping algebras, J. Am. Math. Soc., Volume 3 (1990), pp. 447-498 | MR | Zbl | DOI

[42.] G. Lusztig Canonical bases arising from quantized enveloping algebras II, Prog. Theor. Phys. Suppl., Volume 102 (1990), pp. 175-201 | MR | Zbl | DOI

[43.] G. Lusztig Quivers, perverse sheaves, and quantized enveloping algebras, J. Am. Math. Soc., Volume 4 (1991), pp. 365-421 | MR | Zbl | DOI

[44.] G. Lusztig Affine quivers and canonical bases, Publ. Math. Inst. Hautes Études Sci., Volume 76 (1992), pp. 111-163 | DOI | MR | Zbl | Numdam

[45.] G. Lusztig Braid group action and canonical bases, Adv. Math., Volume 122 (1996), pp. 237-261 | MR | Zbl | DOI

[46.] I. Mirković; K. Vilonen Geometric Langlands duality and representations of algebraic groups over commutative rings, Ann. Math., Volume 166 (2007), pp. 95-143 | MR | Zbl | DOI

[47.] D. Mumford The Red Book of Varieties and Schemes (1999) | MR | Zbl

[48.] D. Muthiah Double MV cycles and the Naito-Sagaki-Saito crystal, Adv. Math. (2013) | MR | Zbl

[49.] D. Muthiah; P. Tingley Affine PBW bases and MV polytopes in rank 2, Sel. Math. (2012) | MR | Zbl

[50.] S. Naito; D. Sagaki; Y. Saito et al. Toward Berenstein-Zelevinsky data in affine type A, parts I and II, Representation Theory of Algebraic Groups and Quantum Groups ’10 (2012), pp. 143-216 | MR

[51.] S. Naito; D. Sagaki; Y. Saito et al. Toward Berenstein-Zelevinsky data in affine type A. Part III. Symmetries, integrable systems and representations, Springer Proceedings in Mathematics and Statistics (2013), pp. 361-402 | MR

[52.] M. Reineke The Harder-Narasimhan system in quantum groups and cohomology of quiver moduli, Invent. Math., Volume 152 (2003), pp. 349-368 | MR | Zbl | DOI

[53.] C. M. Ringel The preprojective algebra of a quiver, Algebras and Modules II, Eighth International Conference on Representations of Algebras (1998), pp. 467-480 | MR | Zbl

[54.] C. M. Ringel et al. The preprojective algebra of a tame quiver: the irreducible components of the module varieties, Trends in the Representation Theory of Finite Dimensional Algebras (1998), pp. 293-306 | MR | Zbl

[55.] A. Rudakov Stability for an Abelian category, J. Algebra, Volume 197 (1997), pp. 231-245 | MR | Zbl | DOI

[56.] Y. Saito PBW basis of quantized universal enveloping algebras, Publ. Res. Inst. Math. Sci., Volume 30 (1994), pp. 209-232 | MR | Zbl | DOI

[57.] Y. Sekiya; K. Yamaura Tilting theoretical approach to moduli spaces over preprojective algebras, Algebr. Represent. Theory (2012) | MR | Zbl

[58.] S. Shatz The decomposition and specialization of algebraic families of vector bundles, Compos. Math., Volume 35 (1977), pp. 163-187 | MR | Zbl | Numdam

Cited by Sources: