Landau-Ginzburg/Calabi-Yau correspondence, global mirror symmetry and Orlov equivalence
Publications Mathématiques de l'IHÉS, Volume 119 (2014), pp. 127-216

We show that the Gromov-Witten theory of Calabi-Yau hypersurfaces matches, in genus zero and after an analytic continuation, the quantum singularity theory (FJRW theory) recently introduced by Fan, Jarvis and Ruan following a proposal of Witten. Moreover, on both sides, we highlight two remarkable integral local systems arising from the common formalism of Γ ^-integral structures applied to the derived category of the hypersurface {W=0} and to the category of graded matrix factorizations of W. In this setup, we prove that the analytic continuation matches Orlov equivalence between the two above categories.

Received:
Accepted:
Online First:
Published online:
DOI: 10.1007/s10240-013-0056-z
Keywords: Integral Structure, Chern Character, Quantum Cohomology, Twisted Theory, Frobenius Manifold

Alessandro Chiodo 1; Hiroshi Iritani 2; Yongbin Ruan 3

1 Institut de Mathématiques de Jussieu, UMR 7586 CNRS, Université Pierre et Marie Curie Case 247, 4 Place Jussieu 75252 Paris cedex 05 France
2 Department of Mathematics, Graduate School of Science, Kyoto University Kitashirakawa-Oiwake-cho, Sakyo-ku 606-8502 Kyoto Japan
3 Department of Mathematics, University of Michigan 48109-1109 Ann Arbor MI USA
@article{PMIHES_2014__119__127_0,
     author = {Alessandro Chiodo and Hiroshi Iritani and Yongbin Ruan},
     title = {Landau-Ginzburg/Calabi-Yau correspondence, global mirror symmetry and {Orlov} equivalence},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {127--216},
     year = {2014},
     publisher = {Springer Berlin Heidelberg},
     address = {Berlin/Heidelberg},
     volume = {119},
     doi = {10.1007/s10240-013-0056-z},
     mrnumber = {3210178},
     zbl = {1298.14042},
     language = {en},
     url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-013-0056-z/}
}
TY  - JOUR
AU  - Alessandro Chiodo
AU  - Hiroshi Iritani
AU  - Yongbin Ruan
TI  - Landau-Ginzburg/Calabi-Yau correspondence, global mirror symmetry and Orlov equivalence
JO  - Publications Mathématiques de l'IHÉS
PY  - 2014
SP  - 127
EP  - 216
VL  - 119
PB  - Springer Berlin Heidelberg
PP  - Berlin/Heidelberg
UR  - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-013-0056-z/
DO  - 10.1007/s10240-013-0056-z
LA  - en
ID  - PMIHES_2014__119__127_0
ER  - 
%0 Journal Article
%A Alessandro Chiodo
%A Hiroshi Iritani
%A Yongbin Ruan
%T Landau-Ginzburg/Calabi-Yau correspondence, global mirror symmetry and Orlov equivalence
%J Publications Mathématiques de l'IHÉS
%D 2014
%P 127-216
%V 119
%I Springer Berlin Heidelberg
%C Berlin/Heidelberg
%U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-013-0056-z/
%R 10.1007/s10240-013-0056-z
%G en
%F PMIHES_2014__119__127_0
Alessandro Chiodo; Hiroshi Iritani; Yongbin Ruan. Landau-Ginzburg/Calabi-Yau correspondence, global mirror symmetry and Orlov equivalence. Publications Mathématiques de l'IHÉS, Volume 119 (2014), pp. 127-216. doi: 10.1007/s10240-013-0056-z

[1.] D. Abramovich; T. Graber; A. Vistoli Gromov-Witten theory of Deligne-Mumford stacks, Am. J. Math., Volume 130 (2008), pp. 1337-1398 | MR | Zbl | DOI

[2.] D. Abramovich; A. Vistoli Compactifying the space of stable maps, J. Am. Math. Soc., Volume 15 (2002), pp. 27-75 | MR | Zbl | DOI

[3.] P.  S. Aspinwall D-branes on Calabi-Yau manifolds, Progress in String Theory (2005), pp. 1-152 | MR | Zbl

[4.] V.  V. Batyrev Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, J. Algebr. Geom., Volume 3 (1994), pp. 493-535 | MR | Zbl

[5.] L.  A. Borisov; R. Paul Horja Mellin-Barnes integrals as Fourier-Mukai transforms, Adv. Math., Volume 207 (2006), pp. 876-927 | MR | Zbl | DOI

[6.] L. A. Borisov and R. Paul Horja, On the better-behaved version of the GKZ hypergeometric system. | arXiv | Zbl

[7.] R.-O. Buchweitz, Maximal Cohen-Macaulay modules and Tate cohomology over Gorenstein rings, 1986. https://tspace.library.utoronto.ca/bitstream/1807/16682/1/maximal_cohen-macaulay_modules_1986.pdf.

[8.] R.-O. Buchweitz; G.-M. Greuel; F.-O. Schreyer Cohen-Macaulay modules on hypersurface singularities. II, Invent. Math., Volume 88 (1987), pp. 165-182 | MR | Zbl | DOI

[9.] A. Canonaco; R.  L. Karp Derived autoequivalences and a weighted Beilinson resolution, J. Geom. Phys., Volume 58 (2008), pp. 743-760 | MR | Zbl | DOI

[10.] W. Chen; Y. Ruan Orbifold Gromov-Witten theory, Orbifolds in Mathematics and Physics (2002), pp. 25-85 | MR | Zbl

[11.] A. Chiodo Stable twisted curves and their r-spin structures (Courbes champêtres stables et leurs structures r-spin), Ann. Inst. Fourier (Grenoble), Volume 58 (2008), pp. 1635-1689 | MR | Zbl | Numdam | DOI

[12.] A. Chiodo and J. Nagel, in preparation.

[13.] A. Chiodo; Y. Ruan Landau-Ginzburg/Calabi-Yau correspondence for quintic three-folds via symplectic transformations, Invent. Math., Volume 182 (2010), pp. 117-165 | MR | Zbl | DOI

[14.] A. Chiodo; Y. Ruan LG/CY correspondence: the state space isomorphism, Adv. Math., Volume 227 (2011), pp. 2157-2188 | MR | Zbl | DOI

[15.] A. Chiodo and Y. Ruan, A global mirror symmetry framework for the Landau-Ginzburg/Calabi-Yau correspondence, Annales de l’Institut Fourier, to appear. http://www-fourier.ujf-grenoble.fr/~chiodo/framework. | MR | Numdam

[16.] A. Chiodo; D. Zvonkine Twisted r-spin potential and Givental’s quantization, Adv. Theor. Math. Phys., Volume 13 (2009), pp. 1335-1369 | MR | Zbl | DOI

[17.] T. Coates; A. Corti; H. Iritani; H.-H. Tseng Computing genus-zero twisted Gromov-Witten invariants, Duke Math. J., Volume 147 (2009), pp. 377-438 | MR | Zbl | DOI

[18.] T. Coates, A. Corti, H. Iritani, and H.-H. Tseng, in preparation.

[19.] T. Coates; A. Corti; Y.-P. Lee; H.-H. Tseng The quantum orbifold cohomology of weighted projective spaces, Acta Math., Volume 202 (2009), pp. 139-193 | MR | Zbl | DOI

[20.] T. Coates; A. Gholampour; H. Iritani; Y. Jiang; P. Johnson; C. Manolache The quantum Lefschetz hyperplane principle can fail for positive orbifold hypersurfaces, Math. Res. Lett., Volume 19 (2012), pp. 997-1005 | MR | Zbl | DOI

[21.] T. Coates; A. Givental Quantum Riemann-Roch, Lefschetz and Serre, Ann. Math. (2), Volume 165 (2007), pp. 15-53 | MR | Zbl | DOI

[22.] T. Dyckerhoff Compact generators in categories of matrix factorizations, Duke Math. J., Volume 159 (2011), pp. 223-274 | MR | Zbl | DOI

[23.] D. Eisenbud Homological algebra on a complete intersection, with an application to group representations, Trans. Am. Math. Soc., Volume 260 (1980), pp. 35-64 | MR | Zbl | DOI

[24.] C. Faber; R. Pandharipande Hodge integrals and Gromov-Witten theory, Invent. Math., Volume 139 (2000), pp. 173-199 | MR | Zbl | DOI

[25.] H. Fan T. Jarvis, and Y. Ruan, The Witten equation and its virtual fundamental cycle. | arXiv

[26.] H. Fan; T. Jarvis; Y. Ruan The Witten equation, mirror symmetry and quantum singularity theory, Ann. Math., Volume 178 (2013), pp. 1-106 | MR | Zbl | DOI

[27.] I. M. Gelfand; A. V. Zelevinsky; M. M. Kapranov Hypergeometric functions and toral manifolds, Funkc. Anal. Prilozh., Volume 23 (1989), pp. 12-26 | MR | Zbl

[28.] A. Givental A mirror theorem for toric complete intersections, Topological Field Theory, Primitive Forms and Related Topics (1998), pp. 141-175 | MR | Zbl

[29.] A.  B. Givental Symplectic geometry of Frobenius structures, Frobenius Manifolds (2004), pp. 91-112 | MR | Zbl

[30.] B.  R. Greene; C. Vafa; N.  P. Warner Calabi-Yau manifolds and renormalization group flows, Nucl. Phys. B, Volume 324 (1989), pp. 371-390 | MR | Zbl | DOI

[31.] P. Griffiths; J. Harris Principles of Algebraic Geometry, Wiley Classics Library (1994) | MR | Zbl

[32.] M.  A. Guest Quantum cohomology via D-modules, Topology, Volume 44 (2005), pp. 263-281 | MR | Zbl | DOI

[33.] M. A. Guest and H. Sakai, Orbifold quantum D-modules associated to weighted projective spaces. | arXiv

[34.] M. Herbst, K. Hori, and D. C. Page, Phases of 𝒩=2 theories in 1+1 dimensions with boundary. | arXiv

[35.] C. Hertling tt geometry, Frobenius manifolds, their connections, and the construction for singularities, J. Reine Angew. Math., Volume 555 (2003), pp. 77-161 | MR | Zbl

[36.] C. Hertling; Y. Manin Unfoldings of meromorphic connections and a construction of Frobenius manifolds, Frobenius Manifolds (2004), pp. 113-144 | MR | Zbl

[37.] K. Hori; J. Walcher F-term equations near Gepner points, J. High Energy Phys., Volume 1 (2005) | MR | DOI

[38.] R. Paul Horja, Hypergeometric functions and mirror symmetry in toric varieties. | arXiv

[39.] S. Hosono Central charges, symplectic forms, and hypergeometric series in local mirror symmetry, Mirror Symmetry. V (2006), pp. 405-439 | MR | Zbl

[40.] H. Iritani Convergence of quantum cohomology by quantum Lefschetz, J. Reine Angew. Math., Volume 610 (2007), pp. 29-69 | MR | Zbl

[41.] H. Iritani Quantum D-modules and generalized mirror transformations, Topology, Volume 47 (2008), pp. 225-276 | MR | Zbl | DOI

[42.] H. Iritani An integral structure in quantum cohomology and mirror symmetry for toric orbifolds, Adv. Math., Volume 222 (2009), pp. 1016-1079 | MR | Zbl | DOI

[43.] H. Iritani, Quantum cohomology and periods, Annales de l’Institut Fourier, to appear. | arXiv | MR | Zbl | Numdam

[44.] L. Katzarkov; M. Kontsevich; T. Pantev Hodge theoretic aspects of mirror symmetry, From Hodge theory to integrability and TQFT tt*-geometry (2008), pp. 87-174 | MR | Zbl

[45.] T. Kawasaki The Riemann-Roch theorem for complex V-manifolds, Osaka J. Math., Volume 16 (1979), pp. 151-159 | MR | Zbl

[46.] M. Kontsevich Homological Algebra of Mirror Symmetry (1995), pp. 120-139 | MR | Zbl

[47.] M. Kontsevich; Yu. Manin Gromov-Witten classes, quantum cohomology, and enumerative geometry, Commun. Math. Phys., Volume 164 (1994), pp. 525-562 | MR | Zbl | DOI

[48.] A. Libgober Chern classes and the periods of mirrors, Math. Res. Lett., Volume 6 (1999), pp. 141-149 | MR | Zbl | DOI

[49.] Yu.  I. Manin Frobenius Manifolds, Quantum Cohomology, and Moduli Spaces (1999) | MR | Zbl

[50.] E. Mann and T. Mignon, Quantum D-modules for toric nef complete intersections. | arXiv

[51.] E.  J. Martinec Criticality, catastrophes, and compactifications, Physics and Mathematics of Strings (1990), pp. 389-433 | MR | Zbl

[52.] D. Orlov Triangulated categories of singularities and D-branes in Landau-Ginzburg models, Tr. Mat. Inst. Steklova, Volume 246 (2004), pp. 240-262 | MR | Zbl

[53.] D. Orlov Derived categories of coherent sheaves and triangulated categories of singularities, Algebra, Arithmetic, and Geometry: In Honor of Yu. I. Manin. Vol. II (2009), pp. 503-531 | MR | Zbl

[54.] R. Pandharipande Rational curves on hypersurfaces (after A. Givental), Astérisque, Volume 252 (1998), pp. 307-340 | MR | Zbl | Numdam

[55.] F. Pham La descente des cols par les onglets de Lefschetz, avec vues sur Gauss-Manin, Astérisque, Volume 130 (1985), pp. 11-47 | MR | Zbl | Numdam

[56.] A. Polishchuk; A. Vaintrob Chern characters and Hirzebruch-Riemann-Roch formula for matrix factorizations, Duke Math. J., Volume 161 (2012), pp. 1863-1926 | MR | Zbl | DOI

[57.] A. Polishchuk and A. Vaintrob, Matrix Factorizations and Cohomological Field Theory. | arXiv

[58.] A. Pressley; G. Segal Loop Groups (1986) | Zbl | MR

[59.] T. Reichelt A construction of Frobenius manifolds with logarithmic poles and applications, Commun. Math. Phys., Volume 287 (2009), pp. 1145-1187 | MR | Zbl | DOI

[60.] M.  A. Rose A reconstruction theorem for genus zero Gromov-Witten invariants of stacks, Am. J. Math., Volume 130 (2008), pp. 1427-1443 | MR | Zbl | DOI

[61.] K. Saito The higher residue pairings K F (k) for a family of hypersurface singular points, Singularities, Part 2 (1983), pp. 441-463 | MR | Zbl

[62.] E. Segal Equivalence between GIT quotients of Landau-Ginzburg B-models, Commun. Math. Phys., Volume 304 (2011), pp. 411-432 | MR | Zbl | DOI

[63.] P. Seidel; R. Thomas Braid group actions on derived categories of coherent sheaves, Duke Math. J., Volume 108 (2001), pp. 37-108 | MR | Zbl | DOI

[64.] J. Steenbrink Intersection form for quasi-homogeneous singularities, Compos. Math., Volume 34 (1977), pp. 211-223 | MR | Zbl | Numdam

[65.] B. Toën Théorèmes de Riemann-Roch pour les champs de Deligne-Mumford, K-Theory, Volume 18 (1999), pp. 33-76 | MR | Zbl | DOI

[66.] H.-H. Tseng Orbifold quantum Riemann-Roch, Lefschetz and Serre, Geom. Topol., Volume 14 (2010), pp. 1-81 | MR | Zbl | DOI

[67.] C. Vafa; N.  P. Warner Catastrophes and the classification of conformal theories, Phys. Lett. B, Volume 218 (1989), pp. 51-58 | MR | DOI

[68.] J. Walcher Stability of Landau-Ginzburg branes, J. Math. Phys., Volume 46 (2005) | MR | Zbl | DOI

[69.] E. Witten Phases of N=2 theories in two dimensions, Nucl. Phys. B, Volume 403 (1993), pp. 159-222 | MR | Zbl | DOI

[70.] E. Witten Algebraic Geometry Associated with Matrix Models of Two-Dimensional Gravity (1991) | MR | Zbl

Cited by Sources: