K - and L -theory of group rings over G L n ( 𝐙 )
Publications Mathématiques de l'IHÉS, Volume 119 (2014), pp. 97-125

We prove the K - and L -theoretic Farrell-Jones Conjecture (with coefficients in additive categories) for G L n ( 𝐙 )

Received:
Accepted:
Online First:
Published online:
DOI: 10.1007/s10240-013-0055-0
Keywords: Abelian Group, Volume Function, Group Ring, Cyclic Subgroup, Wreath Product

Arthur Bartels 1; Wolfgang Lück 2; Holger Reich 3; Henrik Rüping 2

1 Mathematisches Institut, Westfälische Wilhelms-Universität Münster Einsteinstr. 60 48149 Münster Germany
2 Mathematisches Institut, Rheinische Wilhelms-Universität Bonn Endenicher Allee 60 53115 Bonn Germany
3 Institut für Mathematik, Freie Universität Berlin Arnimallee 7 14195 Berlin Germany
@article{PMIHES_2014__119__97_0,
     author = {Arthur Bartels and Wolfgang L\"uck and Holger Reich and Henrik R\"uping},
     title = {$K$- and \protect\emph{$L$}-theory of group rings over $GL_n ( \mathbf{Z} )$},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {97--125},
     year = {2014},
     publisher = {Springer Berlin Heidelberg},
     address = {Berlin/Heidelberg},
     volume = {119},
     doi = {10.1007/s10240-013-0055-0},
     language = {en},
     url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-013-0055-0/}
}
TY  - JOUR
AU  - Arthur Bartels
AU  - Wolfgang Lück
AU  - Holger Reich
AU  - Henrik Rüping
TI  - $K$- and $L$-theory of group rings over $GL_n ( \mathbf{Z} )$
JO  - Publications Mathématiques de l'IHÉS
PY  - 2014
SP  - 97
EP  - 125
VL  - 119
PB  - Springer Berlin Heidelberg
PP  - Berlin/Heidelberg
UR  - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-013-0055-0/
DO  - 10.1007/s10240-013-0055-0
LA  - en
ID  - PMIHES_2014__119__97_0
ER  - 
%0 Journal Article
%A Arthur Bartels
%A Wolfgang Lück
%A Holger Reich
%A Henrik Rüping
%T $K$- and $L$-theory of group rings over $GL_n ( \mathbf{Z} )$
%J Publications Mathématiques de l'IHÉS
%D 2014
%P 97-125
%V 119
%I Springer Berlin Heidelberg
%C Berlin/Heidelberg
%U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-013-0055-0/
%R 10.1007/s10240-013-0055-0
%G en
%F PMIHES_2014__119__97_0
Arthur Bartels; Wolfgang Lück; Holger Reich; Henrik Rüping. $K$- and $L$-theory of group rings over $GL_n ( \mathbf{Z} )$. Publications Mathématiques de l'IHÉS, Volume 119 (2014), pp. 97-125. doi: 10.1007/s10240-013-0055-0

[1.] A. Bartels, T. Farrell, and W. Lück, The Farrell-Jones conjecture for cocompact lattices in virtually connected Lie groups. | arXiv

[2.] A. Bartels; W. Lück On twisted group rings with twisted involutions, their module categories and L-theory, Cohomology of Groups and Algebraic K-Theory (2009), pp. 1-55 | MR | Zbl

[3.] A. Bartels; W. Lück Geodesic flow for CAT(0)-groups, Geom. Topol., Volume 16 (2012), pp. 1345-1391 | MR | Zbl | DOI

[4.] A. Bartels; W. Lück The Borel conjecture for hyperbolic and CAT(0)-groups, Ann. Math. (2), Volume 175 (2012), pp. 631-689 | MR | Zbl | DOI

[5.] A. Bartels; W. Lück; H. Reich The K-theoretic Farrell-Jones conjecture for hyperbolic groups, Invent. Math., Volume 172 (2008), pp. 29-70 | MR | Zbl | DOI

[6.] A. Bartels; W. Lück; H. Reich On the Farrell-Jones conjecture and its applications, Topology, Volume 1 (2008), pp. 57-86 | MR | Zbl | DOI

[7.] A. Bartels; H. Reich Coefficients for the Farrell-Jones conjecture, Adv. Math., Volume 209 (2007), pp. 337-362 | MR | Zbl | DOI

[8.] M. R. Bridson; A. Haefliger Metric Spaces of Non-Positive Curvature (1999) | MR | Zbl

[9.] K. S. Brown Cohomology of Groups (1982) | MR | Zbl

[10.] J. F. Davis; F. Quinn; H. Reich Algebraic K-theory over the infinite dihedral group: a controlled topology approach, Topology, Volume 4 (2011), pp. 505-528 | MR | Zbl | DOI

[11.] J. D. Dixon; B. Mortimer Permutation Groups (1996) | MR | Zbl

[12.] P. B. Eberlein Geometry of Nonpositively Curved Manifolds (1996) | MR | Zbl

[13.] F. T. Farrell; L. E. Jones Isomorphism conjectures in algebraic K-theory, J. Am. Math. Soc., Volume 6 (1993), pp. 249-297 | MR | Zbl

[14.] F. T. Farrell; L. E. Jones Rigidity for aspherical manifolds with π1GLm(R), Asian J. Math., Volume 2 (1998), pp. 215-262 | MR | Zbl

[15.] F. T. Farrell; S. K. Roushon The Whitehead groups of braid groups vanish, Int. Math. Res. Not., Volume 10 (2000), pp. 515-526 | MR | Zbl | DOI

[16.] D. R. Grayson Reduction theory using semistability, Comment. Math. Helv., Volume 59 (1984), pp. 600-634 | MR | Zbl | DOI

[17.] P. Griffiths; J. Harris Principles of Algebraic Geometry (1978) | Zbl | MR

[18.] S. Helgason Differential Geometry, Lie Groups, and Symmetric Spaces (1978) | MR | Zbl

[19.] P. Kühl, Isomorphismusvermutungen und 3-Mannigfaltigkeiten. Preprint, | arXiv

[20.] W. Lück Survey on classifying spaces for families of subgroups, Infinite Groups: Geometric, Combinatorial and Dynamical Aspects (2005), pp. 269-322 | MR | Zbl

[21.] W. Lück; H. Reich The Baum-Connes and the Farrell-Jones conjectures in K- and L-theory, Handbook of K-Theory, vols. 1, 2 (2005), pp. 703-842 | MR | Zbl

[22.] J. Neukirch Algebraic Number Theory (1999) | MR | Zbl

[23.] S. K. Roushon The Farrell-Jones isomorphism conjecture for 3-manifold groups, K-Theory, Volume 1 (2008), pp. 49-82 | MR | Zbl

[24.] C. Wegner The K-theoretic Farrell-Jones conjecture for CAT(0)-groups, Proc. Am. Math. Soc., Volume 140 (2012), pp. 779-793 | MR | Zbl | DOI

Cited by Sources: