Nonlinear spectral calculus and super-expanders
Publications Mathématiques de l'IHÉS, Volume 119 (2014), pp. 1-95

Nonlinear spectral gaps with respect to uniformly convex normed spaces are shown to satisfy a spectral calculus inequality that establishes their decay along Cesàro averages. Nonlinear spectral gaps of graphs are also shown to behave sub-multiplicatively under zigzag products. These results yield a combinatorial construction of super-expanders, i.e., a sequence of 3-regular graphs that does not admit a coarse embedding into any uniformly convex normed space.

Received:
Accepted:
Online First:
Published online:
DOI: 10.1007/s10240-013-0053-2
Keywords: Banach Space, Regular Graph, Graph Product, Base Graph, Expander Graph

Manor Mendel 1; Assaf Naor 2

1 Mathematics and Computer Science Department, Open University of Israel P.O. Box 808 1 University Road 43107 Raanana Israel
2 Courant Institute, New York University 251 Mercer Street 10012 New York NY USA
@article{PMIHES_2014__119__1_0,
     author = {Manor Mendel and Assaf Naor},
     title = {Nonlinear spectral calculus and super-expanders},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {1--95},
     year = {2014},
     publisher = {Springer Berlin Heidelberg},
     address = {Berlin/Heidelberg},
     volume = {119},
     doi = {10.1007/s10240-013-0053-2},
     zbl = {1306.46021},
     language = {en},
     url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-013-0053-2/}
}
TY  - JOUR
AU  - Manor Mendel
AU  - Assaf Naor
TI  - Nonlinear spectral calculus and super-expanders
JO  - Publications Mathématiques de l'IHÉS
PY  - 2014
SP  - 1
EP  - 95
VL  - 119
PB  - Springer Berlin Heidelberg
PP  - Berlin/Heidelberg
UR  - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-013-0053-2/
DO  - 10.1007/s10240-013-0053-2
LA  - en
ID  - PMIHES_2014__119__1_0
ER  - 
%0 Journal Article
%A Manor Mendel
%A Assaf Naor
%T Nonlinear spectral calculus and super-expanders
%J Publications Mathématiques de l'IHÉS
%D 2014
%P 1-95
%V 119
%I Springer Berlin Heidelberg
%C Berlin/Heidelberg
%U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-013-0053-2/
%R 10.1007/s10240-013-0053-2
%G en
%F PMIHES_2014__119__1_0
Manor Mendel; Assaf Naor. Nonlinear spectral calculus and super-expanders. Publications Mathématiques de l'IHÉS, Volume 119 (2014), pp. 1-95. doi: 10.1007/s10240-013-0053-2

[1.] N. Alon; O. Schwartz; A. Shapira An elementary construction of constant-degree expanders, Comb. Probab. Comput., Volume 17 (2008), pp. 319-327 | Zbl | DOI

[2.] N. Alon; J. H. Spencer The Probabilistic Method (2008) | Zbl

[3.] U. Bader; A. Furman; T. Gelander; N. Monod Property (T) and rigidity for actions on Banach spaces, Acta Math., Volume 198 (2007), pp. 57-105 | Zbl | DOI

[4.] K. Ball Markov chains, Riesz transforms and Lipschitz maps, Geom. Funct. Anal., Volume 2 (1992), pp. 137-172 | Zbl | DOI

[5.] K. Ball; E. A. Carlen; E. H. Lieb Sharp uniform convexity and smoothness inequalities for trace norms, Invent. Math., Volume 115 (1994), pp. 463-482 | Zbl | DOI

[6.] Y. Bartal; N. Linial; M. Mendel; A. Naor On metric Ramsey-type phenomena, Ann. Math., Volume 162 (2005), pp. 643-709 | Zbl | DOI

[7.] W. Beckner Inequalities in Fourier analysis, Ann. Math., Volume 102 (1975), pp. 159-182 | Zbl | DOI

[8.] A. Bonami Étude des coefficients de Fourier des fonctions de Lp(G), Ann. Inst. Fourier (Grenoble), Volume 20 (1971), pp. 335-402 | Zbl | Numdam | DOI

[9.] A. A. Borovkov; S. A. Utev An inequality and a characterization of the normal distribution connected with it, Teor. Veroâtn. Ee Primen., Volume 28 (1983), pp. 209-218 | Zbl

[10.] J. Bourgain On Lipschitz embedding of finite metric spaces in Hilbert space, Isr. J. Math., Volume 52 (1985), pp. 46-52 | Zbl | DOI

[11.] M. R. Bridson; A. Haefliger Metric Spaces of Non-positive Curvature (1999) | Zbl

[12.] P.-A. Cherix; M. Cowling; P. Jolissaint; P. Julg; A. Valette Groups with the Haagerup Property (2001) | Zbl

[13.] F. Chung Diameters and eigenvalues, J. Am. Math. Soc., Volume 2 (1989), pp. 187-195 | Zbl | DOI

[14.] T. Figiel On the moduli of convexity and smoothness, Stud. Math., Volume 56 (1976), pp. 121-155 | Zbl

[15.] T. Figiel; G. Pisier Séries aléatoires dans les espaces uniformément convexes ou uniformément lisses, C. R. Acad. Sci. Paris Sér. A, Volume 279 (1974), pp. 611-614 | Zbl

[16.] J. B. Garnett; D. E. Marshall Harmonic Measure (2008) | Zbl

[17.] M. Gromov Filling Riemannian manifolds, J. Differ. Geom., Volume 18 (1983), pp. 1-147 | Zbl

[18.] M. Gromov Asymptotic invariants of infinite groups, Geometric Group Theory, Vol. 2 (1993), pp. 1-295

[19.] M. Gromov Random walk in random groups, Geom. Funct. Anal., Volume 13 (2003), pp. 73-146 | Zbl | DOI

[20.] E. Guentner; N. Higson; S. Weinberger The Novikov conjecture for linear groups, Publ. Math. Inst. Hautes Études Sci., Volume 101 (2005), pp. 243-268 | Zbl | Numdam | DOI

[21.] S. Hoory; N. Linial; A. Wigderson Expander graphs and their applications, Bull., New Ser., Am. Math. Soc., Volume 43 (2006), pp. 439-561 | Zbl | DOI

[22.] R. C. James A nonreflexive Banach space that is uniformly nonoctahedral, Isr. J. Math., Volume 18 (1974), pp. 145-155 | Zbl | DOI

[23.] R. C. James Nonreflexive spaces of type 2, Isr. J. Math., Volume 30 (1978), pp. 1-13 | Zbl | DOI

[24.] R. C. James; J. Lindenstrauss The octahedral problem for Banach spaces, Proceedings of the Seminar on Random Series, Convex Sets and Geometry of Banach Spaces (Mat. Inst., Aarhus Univ., Aarhus, 1974; Dedicated to the Memory of E. Asplund) (1975), pp. 100-120 | Zbl

[25.] N. J. Kalton The uniform structure of Banach spaces, Math. Ann., Volume 354 (2012), pp. 1247-1288 | Zbl | DOI

[26.] N. J. Kalton; N. T. Peck; J. W. Roberts An F-Space Sampler (1984) | Zbl

[27.] G. Kasparov; G. Yu The coarse geometric Novikov conjecture and uniform convexity, Adv. Math., Volume 206 (2006), pp. 1-56 | Zbl | DOI

[28.] S. Khot; A. Naor Nonembeddability theorems via Fourier analysis, Math. Ann., Volume 334 (2006), pp. 821-852 | Zbl | DOI

[29.] V. Lafforgue Un renforcement de la propriété (T), Duke Math. J., Volume 143 (2008), pp. 559-602 | Zbl | DOI

[30.] V. Lafforgue Propriété (T) renforcée Banachique et transformation de Fourier rapide, J. Topol. Anal., Volume 1 (2009), pp. 191-206 | Zbl | DOI

[31.] V. Lafforgue Propriété (T) renforcée et conjecture de Baum-Connes, Quanta of Maths (2010), pp. 323-345 | Zbl

[32.] M. Ledoux The Concentration of Measure Phenomenon (2001) | Zbl

[33.] J. Lindenstrauss On the modulus of smoothness and divergent series in Banach spaces, Mich. Math. J., Volume 10 (1963), pp. 241-252 | Zbl | DOI

[34.] J. Lindenstrauss; L. Tzafriri Classical Banach Spaces. II (1979) | Zbl

[35.] N. Linial; E. London; Y. Rabinovich The geometry of graphs and some of its algorithmic applications, Combinatorica, Volume 15 (1995), pp. 215-245 | Zbl | DOI

[36.] A. Lubotzky Expander graphs in pure and applied mathematics, Bull., New Ser., Am. Math. Soc., Volume 49 (2012), pp. 113-162 | Zbl | DOI

[37.] A. Lubotzky; R. Phillips; P. Sarnak Ramanujan graphs, Combinatorica, Volume 8 (1988), pp. 261-277 | Zbl | DOI

[38.] R. A. Macías; C. Segovia Lipschitz functions on spaces of homogeneous type, Adv. Math., Volume 33 (1979), pp. 257-270 | Zbl | DOI

[39.] F. J. MacWilliams; N. J. A. Sloane The Theory of Error-Correcting Codes. I (1977) | Zbl

[40.] G. A. Margulis Explicit group-theoretic constructions of combinatorial schemes and their applications in the construction of expanders and concentrators, Probl. Pereda. Inf., Volume 24 (1988), pp. 51-60 | Zbl

[41.] J. Matoušek On embedding expanders into p spaces, Isr. J. Math., Volume 102 (1997), pp. 189-197 | Zbl | DOI

[42.] B. Maurey Type, cotype and K-convexity, Handbook of the Geometry of Banach Spaces (2003), pp. 1299-1332 | Zbl

[43.] B. Maurey; G. Pisier Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach, Stud. Math., Volume 58 (1976), pp. 45-90 | Zbl

[44.] M. Mendel; A. Naor Euclidean quotients of finite metric spaces, Adv. Math., Volume 189 (2004), pp. 451-494 | Zbl | DOI

[45.] M. Mendel; A. Naor Metric cotype, Ann. Math., Volume 168 (2008), pp. 247-298 | Zbl | DOI

[46.] M. Mendel and A. Naor, Expanders with respect to Hadamard spaces and random graphs, preprint (2012).

[47.] M. Mendel and A. Naor, Spectral calculus and Lipschitz extension for barycentric metric spaces, preprint (2013). Available at | arXiv | Zbl

[48.] P.-A. Meyer Transformations de Riesz pour les lois gaussiennes, Seminar on Probability, XVIII (1984), pp. 179-193 | Zbl | Numdam

[49.] V. D. Milman; G. Schechtman Asymptotic Theory of Finite-Dimensional Normed Spaces (1986) | Zbl

[50.] A. Naor L1 embeddings of the Heisenberg group and fast estimation of graph isoperimetry, Proceedings of the International Congress of Mathematicians (2010), pp. 1549-1575 | Zbl

[51.] A. Naor An introduction to the Ribe program, Jpn. J. Math., Volume 7 (2012), pp. 167-233 | Zbl | DOI

[52.] A. Naor On the Banach-space-valued Azuma inequality and small-set isoperimetry of Alon–Roichman graphs, Comb. Probab. Comput., Volume 21 (2012), pp. 611-622 | Zbl | DOI

[53.] A. Naor and Y. Rabani, Spectral inequalities on curved spaces, preprint (2005).

[54.] A. Naor; G. Schechtman Remarks on non linear type and Pisier’s inequality, J. Reine Angew. Math., Volume 552 (2002), pp. 213-236 | Zbl

[55.] A. Naor; S. Sheffield Absolutely minimal Lipschitz extension of tree-valued mappings, Math. Ann., Volume 354 (2012), pp. 1049-1078 | Zbl | DOI

[56.] A. Naor; L. Silberman Poincaré inequalities, embeddings, and wild groups, Compos. Math., Volume 147 (2011), pp. 1546-1572 | Zbl | DOI

[57.] N. Ozawa A note on non-amenability of ( l p ) for p = 1 , 2 , =1,2, Int. J. Math., Volume 15 (2004), pp. 557-565 | Zbl | DOI

[58.] M. Paluszyński; K. Stempak On quasi-metric and metric spaces, Proc. Am. Math. Soc., Volume 137 (2009), pp. 4307-4312 | Zbl | DOI

[59.] G. Pisier Martingales with values in uniformly convex spaces, Isr. J. Math., Volume 20 (1975), pp. 326-350 | Zbl | DOI

[60.] G. Pisier Some applications of the complex interpolation method to Banach lattices, J. Anal. Math., Volume 35 (1979), pp. 264-281 | Zbl | DOI

[61.] G. Pisier Holomorphic semigroups and the geometry of Banach spaces, Ann. Math., Volume 115 (1982), pp. 375-392 | Zbl | DOI

[62.] G. Pisier, A remark on hypercontractive semigroups and operator ideals, preprint (2007). Available at | arXiv

[63.] G. Pisier Complex interpolation between Hilbert, Banach and operator spaces, Mem. Am. Math. Soc., Volume 208 (2010), p. vi+78 | Zbl

[64.] G. Pisier; Q. H. Xu Random series in the real interpolation spaces between the spaces vp, Geometrical Aspects of Functional Analysis (1985/86) (1987), pp. 185-209 | Zbl

[65.] Y. Rabinovich; R. Raz Lower bounds on the distortion of embedding finite metric spaces in graphs, Discrete Comput. Geom., Volume 19 (1998), pp. 79-94 | Zbl | DOI

[66.] O. Reingold; L. Trevisan; S. P. Vadhan Pseudorandom walks on regular digraphs and the RL vs. L problem, STOC (2006), pp. 457-466 | Zbl

[67.] O. Reingold; S. Vadhan; A. Wigderson Entropy waves, the zig-zag graph product, and new constant-degree expanders, Ann. Math., Volume 155 (2002), pp. 157-187 | Zbl | DOI

[68.] J. Roe Lectures on Coarse Geometry (2003) | Zbl

[69.] E. Rozenman; S. Vadhan Derandomized squaring of graphs, Approximation, Randomization and Combinatorial Optimization (2005), pp. 436-447 | Zbl

[70.] P. Wojtaszczyk Banach Spaces for Analysts (1991) | Zbl

[71.] G. Yu The coarse Baum-Connes conjecture for spaces which admit a uniform embedding into Hilbert space, Invent. Math., Volume 139 (2000), pp. 201-240 | Zbl | DOI

Cited by Sources: