Ramification theory for varieties over a local field
Publications Mathématiques de l'IHÉS, Volume 117 (2013), pp. 1-178

We define generalizations of classical invariants of wild ramification for coverings on a variety of arbitrary dimension over a local field. For an -adic sheaf, we define its Swan class as a 0-cycle class supported on the wild ramification locus. We prove a formula of Riemann-Roch type for the Swan conductor of cohomology together with its relative version, assuming that the local field is of mixed characteristic.

We also prove the integrality of the Swan class for curves over a local field as a generalization of the Hasse-Arf theorem. We derive a proof of a conjecture of Serre on the Artin character for a group action with an isolated fixed point on a regular local ring, assuming the dimension is 2.

Received:
Accepted:
Online First:
Published online:
DOI: 10.1007/s10240-013-0048-z

Kazuya Kato 1; Takeshi Saito 2

1 Department of Mathematics, University of Chicago Chicago, IL, 60637 USA
2 Department of Mathematical Sciences, University of Tokyo Tokyo, 153-8914 Japan
@article{PMIHES_2013__117__1_0,
     author = {Kazuya Kato and Takeshi Saito},
     title = {Ramification theory for varieties over a local field},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {1--178},
     year = {2013},
     publisher = {Springer-Verlag},
     volume = {117},
     doi = {10.1007/s10240-013-0048-z},
     zbl = {1290.14011},
     language = {en},
     url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-013-0048-z/}
}
TY  - JOUR
AU  - Kazuya Kato
AU  - Takeshi Saito
TI  - Ramification theory for varieties over a local field
JO  - Publications Mathématiques de l'IHÉS
PY  - 2013
SP  - 1
EP  - 178
VL  - 117
PB  - Springer-Verlag
UR  - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-013-0048-z/
DO  - 10.1007/s10240-013-0048-z
LA  - en
ID  - PMIHES_2013__117__1_0
ER  - 
%0 Journal Article
%A Kazuya Kato
%A Takeshi Saito
%T Ramification theory for varieties over a local field
%J Publications Mathématiques de l'IHÉS
%D 2013
%P 1-178
%V 117
%I Springer-Verlag
%U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-013-0048-z/
%R 10.1007/s10240-013-0048-z
%G en
%F PMIHES_2013__117__1_0
Kazuya Kato; Takeshi Saito. Ramification theory for varieties over a local field. Publications Mathématiques de l'IHÉS, Volume 117 (2013), pp. 1-178. doi: 10.1007/s10240-013-0048-z

[1.] A. Abbes The Grothendieck-Ogg-Shafarevich formula for arithmetic surfaces, J. Algebr. Geom., Volume 9 (2000), pp. 529-576 | MR | Zbl

[2.] A. Abbes Cycles on arithmetic surfaces, Compos. Math., Volume 122 (2000), pp. 23-111 | MR | Zbl | DOI

[3.] S. Bloch Cycles on arithmetic schemes and Euler characteristics of curves, Algebraic Geometry (Proc. Symp. Pure Math., 46), Am. Math. Soc., Providence (1987), pp. 421-450 (Part 2) | Zbl

[4.] P. Berthelot Immersions réguliérès et calcul du K d’un schema éclaté, Exp. VII, SGA 6 (Lect. Notes Math., 225), Springer, Berlin (1971), pp. 416-465 | Zbl

[5.] N. Bourbaki Algèbre commutative, Hermann, Paris, 1964 | Zbl

[6.] A. J. Jong Smoothness, semi-stability and alterations, Publ. Math. IHÉS, Volume 83 (1996), pp. 51-93 | Zbl | Numdam

[7.] P. Deligne Lemme de Gabber, Séminaire sur les pinceaux arithmétiques: la conjecture de Mordell, Astérisque, Volume 127 (1985), pp. 131-150 | MR | Zbl | Numdam

[8.] P. Deligne; D. Mumford The irreducibility of the space of curves of given genus, Publ. Math. IHÉS, Volume 36 (1969), pp. 75-109 | MR | Zbl | Numdam

[9.] K. Fujiwara; F. Kato Rigid geometry and applications, Adv. Stud. Pure Math., Volume 45 (2006), pp. 327-386 | MR | Zbl

[10.] W. Fulton Intersection Theory, Ergeb. Math. Ihrer Grenzgeb, 3, Springer, Berlin, 1998 (Folge 2) | Zbl | DOI

[11.] A. Grothendieck, avec la collaboration de J. Dieudonné, Éléments de géométrie algébrique III (Seconde partie), Publ. Math. IHÉS, 17 (1963).

[12.] A. Grothendieck, avec la collaboration de J. Dieudonné, Éléments de géométrie algébrique IV (Premiére partie), Publ. Math. IHÉS, 24 (1964).

[13.] A. Grothendieck, avec la collaboration de J. Dieudonné, Éléments de géométrie algébrique IV (Quatrième partie), Publ. Math. IHÉS, 32 (1967). | Zbl | Numdam

[14.] L. Illusie Complexe cotangent et déformations I, Lect. Notes Math., 239, Springer, Berlin, 1971 | Zbl | DOI

[15.] L. Illusie Existence de résolutions globales, Exp. II, SGA 6 (Lect. Notes Math., 225), Springer, Berlin (1971), pp. 160-221 | Zbl

[16.] L. Illusie Conditions de finitude relatives, Exp. III, SGA 6 (Lect. Notes Math., 225), Springer, Berlin (1971), pp. 222-273 | Zbl

[17.] L. Illusie Appendice à “P. Deligne, Théorème de finitude en cohomologie -adique”, Cohomologie étale, SGA $4\frac{1}{2}$ (Lect. Notes Math., 569), Springer, Berlin (1977), pp. 252-261 | Zbl

[18.] L. Illusie Théorie de Brauer et caractéristique d’Euler-Poincaré, Astérisque, Volume 82–83 (1981), pp. 161-172 | MR | Zbl | Numdam

[19.] L. Illusie An overview of the work of K. Fujiwara, K. Kato, and C. Nakayama on logarithmic étale cohomology, Astérisque, Volume 279 (2002), pp. 271-322 | Zbl | Numdam

[20.] K. Kato Residue homomorphisms in Milnor K-theory, Galois groups and their representations, Adv. Stud. Pure Math., Volume 2 (1983), pp. 153-172 | Zbl

[21.] K. Kato, Swan conductors for characters of degree one in the imperfect residue field case, in Contemporary Mathematics, vol. 83, pp. 101–131, 1989. | Zbl

[22.] K. Kato Logarithmic structures of Fontaine-Illusie, Algebraic Analysis, Geometry, and Number Theory, Johns Hopkins University Press, Baltimore (1989), pp. 191-224 | Zbl

[23.] K. Kato Generalized class field theory, Proceedings of ICM, Vol. I, Math. Soc. Japan, Tokyo (1991), pp. 419-428 | Zbl

[24.] K. Kato Class field theory, ${\mathcal{D}}$-modules, and ramification of higher dimensional schemes, Part I, Am. J. Math., Volume 116 (1994), pp. 757-784 | Zbl | DOI

[25.] K. Kato Toric singularities, Am. J. Math., Volume 116 (1994), pp. 1073-1099 | Zbl | DOI

[26.] K. Kato; T. Saito On the conductor formula of Bloch, Publ. Math. IHÉS, Volume 100 (2004), pp. 5-151 | Zbl | Numdam

[27.] K. Kato; T. Saito Ramification theory for varieties over a perfect field, Ann. Math., Volume 168 (2008), pp. 33-96 | MR | Zbl | DOI

[28.] K. Kato; S. Saito; T. Saito Artin characters for algebraic surfaces, Am. J. Math., Volume 109 (1987), pp. 49-76 | MR | Zbl

[29.] F. Knudsen The projectivity of the moduli space of stable curves. II. The stacks M g,n , Math. Scand., Volume 52 (1983), pp. 161-199 | MR | Zbl

[30.] D. Mumford; J. Fogarty; F. Kirwan Geometric Invariant Theory, Ergeb. Math. Ihrer Grenzgeb, 34, Springer, Berlin, 1994 | Zbl | DOI

[31.] M. Nagata A generalization of the imbedding problem of an abstract variety in a complete variety, J. Math. Kyoto Univ., Volume 3 (1963), pp. 89-102 | MR | Zbl

[32.] C. Nakayama Logarithmic etale cohomology, Math. Ann., Volume 308 (1997), pp. 365-404 | MR | Zbl | DOI

[33.] C. Nakayama Nearby cycles for log smooth families, Compos. Math., Volume 112 (1998), pp. 45-75 | MR | Zbl | DOI

[34.] T. Oda Convex Bodies and Algebraic Geometry, Ergeb. Math. Ihrer Grenzgeb, Springer, Berlin, 1988 | Zbl

[35.] M. Rapoport-T. Zink Über die lokale Zetafunktion von Shimuravarietäten, Monodromiefiltration und verschwindende Zyklen in ungleicher Characteristik, Invent. Math., Volume 68 (1982), pp. 21-201 | MR | Zbl | DOI

[36.] M. Raynaud; L. Gruson Critères de platitude et de projectivité, Techniques de “platification” d’un module, Invent. Math., Volume 13 (1971), pp. 1-89 | MR | Zbl | DOI

[37.] Mme M. Raynaud (d’après notes inédites de A. Grothendieck), Propreté cohomologique des faisceaux d’ensembles et des faisceaux de groupes non commutatifs, exposé XIII, in SGA 1, Lect. Notes Math., vol. 224, Springer, Berlin, 1971. Édition recomposée SMF (2003).

[38.] T. Saito The Euler numbers of -adic sheaves of rank 1 in positive characteristic, ICM90 Satellite Conference Proceedings, Arithmetic and Algebraic Geometry, Springer, Berlin (1991), pp. 165-181 | Zbl

[39.] J.-P. Serre Corps Locaux, Hermann, Paris, 1968 | Zbl

[40.] J.-P. Serre Représentations linéaires des groupes finis, Hermann, Paris, 1968 | Zbl

[41.] J.-P. Serre Sur la rationalité des représentations d’Artin, Ann. Math., Volume 72 (1960), pp. 406-420 | Zbl | DOI

[42.] T. Tsushima On localizations of the characteristic classes of -adic sheaves and conductor formula in characteristic p>0, Math. Z., Volume 269 (2011), pp. 411-447 | MR | Zbl | DOI

[43.] I. Vidal Theorie de Brauer et conducteur de Swan, J. Algebr. Geom., Volume 13 (2004), pp. 349-391 | MR | Zbl | DOI

[44.] O. Zariski; P. Samuel Commutative Algebra II, Grad. Texts Math., 29, Springer, Berlin, 1975 | Zbl

Cited by Sources: