A variational approach to complex Monge-Ampère equations
Publications Mathématiques de l'IHÉS, Volume 117 (2013), pp. 179-245

We show that degenerate complex Monge-Ampère equations in a big cohomology class of a compact Kähler manifold can be solved using a variational method, without relying on Yau’s theorem. Our formulation yields in particular a natural pluricomplex analogue of the classical logarithmic energy of a measure. We also investigate Kähler-Einstein equations on Fano manifolds. Using continuous geodesics in the closure of the space of Kähler metrics and Berndtsson’s positivity of direct images, we extend Ding-Tian’s variational characterization and Bando-Mabuchi’s uniqueness result to singular Kähler-Einstein metrics. Finally, using our variational characterization we prove the existence, uniqueness and convergence as k→∞ of k-balanced metrics in the sense of Donaldson both in the (anti)canonical case and with respect to a measure of finite pluricomplex energy.

Received:
Accepted:
Online First:
Published online:
DOI: 10.1007/s10240-012-0046-6

Robert J. Berman 1; Sébastien Boucksom 2; Vincent Guedj 3; Ahmed Zeriahi 4

1 Chalmers Techniska Högskola, Chalmers University of Technology and University of Gothenburg Göteborg Sweden
2 Institut de Mathématiques, CNRS-Université Pierre et Marie Curie 75252, Paris Cedex France
3 I.M.T., Université Paul Sabatier and Institut Universitaire de France 31062, Toulouse Cedex 09 France
4 I.M.T., Université Paul Sabatier 31062, Toulouse Cedex 09 France
@article{PMIHES_2013__117__179_0,
     author = {Robert J. Berman and S\'ebastien Boucksom and Vincent Guedj and Ahmed Zeriahi},
     title = {A variational approach to complex {Monge-Amp\`ere} equations},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {179--245},
     year = {2013},
     publisher = {Springer-Verlag},
     volume = {117},
     doi = {10.1007/s10240-012-0046-6},
     zbl = {1277.32049},
     language = {en},
     url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-012-0046-6/}
}
TY  - JOUR
AU  - Robert J. Berman
AU  - Sébastien Boucksom
AU  - Vincent Guedj
AU  - Ahmed Zeriahi
TI  - A variational approach to complex Monge-Ampère equations
JO  - Publications Mathématiques de l'IHÉS
PY  - 2013
SP  - 179
EP  - 245
VL  - 117
PB  - Springer-Verlag
UR  - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-012-0046-6/
DO  - 10.1007/s10240-012-0046-6
LA  - en
ID  - PMIHES_2013__117__179_0
ER  - 
%0 Journal Article
%A Robert J. Berman
%A Sébastien Boucksom
%A Vincent Guedj
%A Ahmed Zeriahi
%T A variational approach to complex Monge-Ampère equations
%J Publications Mathématiques de l'IHÉS
%D 2013
%P 179-245
%V 117
%I Springer-Verlag
%U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-012-0046-6/
%R 10.1007/s10240-012-0046-6
%G en
%F PMIHES_2013__117__179_0
Robert J. Berman; Sébastien Boucksom; Vincent Guedj; Ahmed Zeriahi. A variational approach to complex Monge-Ampère equations. Publications Mathématiques de l'IHÉS, Volume 117 (2013), pp. 179-245. doi: 10.1007/s10240-012-0046-6

[Ale38] A. D. Aleksandrov On the theory of mixed volumes of convex bodies III: Extension of two theorems of Minkowski on convex polyhedra to arbitrary convex bodies, Mat. Sb., Volume 3 (1938), pp. 27-44 (Russian). [English translation available in Selected Works Part I: Selected Scientific Papers, Gordon and Breach]

[AT84] H. J. Alexander; B. A. Taylor Comparison of two capacities in C n , Math. Z., Volume 186 (1984), pp. 407-417 | MR | DOI | Zbl

[Aub84] T. Aubin Réduction du cas positif de l’équation de Monge-Ampère sur les variétés kählériennes compactes à la démonstration d’une inégalité, J. Funct. Anal., Volume 57 (1984), pp. 143-153 | MR | DOI | Zbl

[BM87] S. Bando; T. Mabuchi Uniqueness of Einstein Kähler metrics modulo connected group actions, Algebraic Geometry (Adv. Stud. Pure Math., 10), Kinokuniya, Tokyo (1987), pp. 11-40 | Zbl

[BT82] E. Bedford; B. A. Taylor A new capacity for plurisubharmonic functions, Acta Math., Volume 149 (1982), pp. 1-40 | MR | DOI | Zbl

[BT87] E. Bedford; B. A. Taylor Fine topology, Šilov boundary, and (dd c ) n , J. Funct. Anal., Volume 72 (1987), pp. 225-251 | MR | DOI | Zbl

[BGZ09] S. Benelkourchi; V. Guedj; A. Zeriahi Plurisubharmonic functions with weak singularities, Complex Analysis and Digital Geometry (Acta Univ. Upsaliensis Skr. Uppsala Univ. C Organ. Hist, 86), Uppsala Universitet, Uppsala (2009), pp. 57-74 | Zbl

[Berm09] R. Berman Bergman kernels and equilibrium measures for line bundles over projective manifolds, Am. J. Math., Volume 131 (2009), pp. 1485-1524 | DOI | Zbl

[BB10] R. Berman; S. Boucksom Growth of balls of holomorphic sections and energy at equilibrium, Invent. Math., Volume 181 (2010), pp. 337-394 | MR | DOI | Zbl

[BD12] R. Berman; J.-P. Demailly Regularity of plurisubharmonic upper envelopes in big cohomology classes, Perspectives in Analysis, Geometry, and Topology (Progr. Math., 296), Birkhäuser/Springer, New York (2012), pp. 39-66 | Zbl | DOI

[BBEGZ11] R. Berman, S. Boucksom, P. Eyssidieux, V. Guedj, and A. Zeriahi, Kähler-Ricci flow and Ricci iteration on log-Fano varieties, preprint (2011), . | arXiv

[Bern09a] B. Berndtsson Curvature of vector bundles associated to holomorphic fibrations, Ann. Math., Volume 169 (2009), pp. 531-560 | MR | DOI | Zbl

[Bern09b] B. Berndtsson Positivity of direct image bundles and convexity on the space of Kähler metrics, J. Differ. Geom., Volume 81 (2009), pp. 457-482 | MR | Zbl

[BCHM10] C. Birkar; P. Cascini; C. Hacon; J. McKernan Existence of minimal models for varieties of log general type, J. Am. Math. Soc., Volume 23 (2010), pp. 405-468 | MR | DOI | Zbl

[Bło09] Z. Błocki On geodesics in the space of Kähler metrics, Advances in Geometric Analysis (Advanced Lectures in Mathematics, 21), International Press, Somerville (2012), pp. 3-20 Proceedings of the Conference in Geometry dedicated to Shing-Tung Yau (Warsaw, April 2009) | Zbl

[BK07] Z. Błocki; S. Kołodziej On regularization of plurisubharmonic functions on manifolds, Proc. Am. Math. Soc., Volume 135 (2007), pp. 2089-2093 | DOI | Zbl

[Bou90] T. Bouche Convergence de la métrique de Fubini-Study d’un fibré linéaire positif, Ann. Inst. Fourier, Volume 40 (1990), pp. 117-130 | DOI | MR | Zbl | Numdam

[Bou04] S. Boucksom Divisorial Zariski decompositions on compact complex manifolds, Ann. Sci. Éc. Norm. Super., Volume 37 (2004), pp. 45-76 | MR | Zbl | Numdam

[BEGZ10] S. Boucksom; P. Eyssidieux; V. Guedj; A. Zeriahi Monge-Ampère equations in big cohomology classes, Acta Math., Volume 205 (2010), pp. 199-262 | MR | DOI | Zbl

[Cat99] D. Catlin The Bergman kernel and a theorem of Tian, Analysis and Geometry in Several Complex Variables (Trends Math.), Birkhäuser, Boston (1999), pp. 1-23 | Zbl | DOI

[Ceg98] U. Cegrell Pluricomplex energy, Acta Math., Volume 180 (1998), pp. 187-217 | MR | DOI | Zbl

[Che00] X. X. Chen The space of Kähler metrics, J. Differ. Geom., Volume 56 (2000), pp. 189-234 | Zbl

[CGZ08] D. Coman; V. Guedj; A. Zeriahi Domains of definition of Monge-Ampère operators on compact Kähler manifolds, Math. Z., Volume 259 (2008), pp. 393-418 | MR | DOI | Zbl

[Dem92] J. P. Demailly Regularization of closed positive currents and intersection theory, J. Algebr. Geom., Volume 1 (1992), pp. 361-409 | MR | Zbl

[Dem91] J. P. Demailly, Potential theory in several complex variables, survey available at http://www-fourier.ujf-grenoble.fr/~demailly/books.html.

[Din09] S. Dinew Uniqueness and stability in ${\mathcal{E}}(X,\omega)$ , J. Funct. Anal., Volume 256 (2009), pp. 2113-2122 | MR | DOI | Zbl

[Ding88] W.-Y. Ding Remarks on the existence problem of positive Kähler-Einstein metrics, Math. Ann., Volume 282 (1988), pp. 463-471 | MR | DOI | Zbl

[Don01] S. K. Donaldson Scalar curvature and projective embeddings I, J. Differ. Geom., Volume 59 (2001), pp. 479-522 | MR | Zbl

[Don05a] S. K. Donaldson Scalar curvature and projective embeddings II, Q. J. Math., Volume 56 (2005), pp. 345-356 | MR | DOI | Zbl

[Don09] S. K. Donaldson Some numerical results in complex differential geometry, Pure Appl. Math. Q., Volume 5 (2009), pp. 571-618 (Special Issue: In honor of Friedrich Hirzebruch. Part 1) | MR | Zbl

[Don99] S. Donaldson et al. Symmetric spaces, Kähler geometry and Hamiltonian dynamics, Northern California Symplectic Geometry Seminar (AMS Translations Series 2, 196), AMS, Providence (1999), pp. 13-33 | Zbl

[EGZ09] P. Eyssidieux; V. Guedj; A. Zeriahi Singular Kähler-Einstein metrics, J. Am. Math. Soc., Volume 22 (2009), pp. 607-639 | MR | DOI | Zbl

[GZ05] V. Guedj; A. Zeriahi Intrinsic capacities on compact Kähler manifolds, J. Geom. Anal., Volume 15 (2005), pp. 607-639 | MR | DOI | Zbl

[GZ07] V. Guedj; A. Zeriahi The weighted Monge-Ampère energy of quasiplurisubharmonic functions, J. Funct. Anal., Volume 250 (2007), pp. 442-482 | MR | DOI | Zbl

[Kel09] J. Keller Ricci iterations on Kähler classes, J. Inst. Math. Jussieu, Volume 8 (2009), pp. 743-768 | MR | DOI | Zbl

[Koł98] S. Kołodziej The complex Monge-Ampère equation, Acta Math., Volume 180 (1998), pp. 69-117 | MR | DOI | Zbl

[LV11] L. Lempert and L. Vivas, Geodesics in the space of Kähler metrics, preprint (2011), . | arXiv | Zbl

[LT83] N. Levenberg; B. A. Taylor Comparison of capacities in C n , Complex Analysis (Lecture Notes in Math., 1094), Springer, Berlin (1984), pp. 162-172 | Zbl

[Mab86] T. Mabuchi K-energy maps integrating Futaki invariants, Tohoku Math. J., Volume 38 (1986), pp. 575-593 | MR | DOI | Zbl

[Mab87] T. Mabuchi Some symplectic geometry on compact Kähler manifolds, Osaka J. Math., Volume 24 (1987), pp. 227-252 | MR | Zbl

[Nak04] N. Nakayama Zariski Decompositions and Abundance, MSJ Memoirs, 14, Mathematical Society of Japan, Tokyo, 2004 (xiv+277 pp) | MR | Zbl

[PSSW08] D. H. Phong; J. Song; J. Sturm; B. Weinkove The Moser-Trudinger inequality on Kähler-Einstein manifolds, Am. J. Math., Volume 130 (2008), pp. 1067-1085 | MR | DOI | Zbl

[Rai69] R. J. Rainwater A note on the preceding paper, Duke Math. J., Volume 36 (1969), pp. 799-800 | MR | DOI | Zbl

[ST] E. B. Saff; V. Totik Logarithmic Potentials with Exterior Fields, Springer, Berlin, 1997 (with an appendix by T. Bloom) | MR

[Sem92] S. Semmes Complex Monge-Ampère and symplectic manifolds, Am. J. Math., Volume 114 (1992), pp. 495-550 | MR | DOI | Zbl

[Sic81] J. Siciak Extremal plurisubharmonic functions in C n , Ann. Pol. Math., Volume 39 (1981), pp. 175-211 | MR | Zbl

[Siu08] Y. T. Siu Finite generation of canonical ring by analytic method, Sci. China Ser. A, Volume 51 (2008), pp. 481-502 | MR | DOI | Zbl

[Sko72] H. Skoda Sous-ensembles analytiques d’ordre fini ou infini dans C n , Bull. Soc. Math. Fr., Volume 100 (1972), pp. 353-408 | MR | Zbl | Numdam

[SoTi08] J. Song; G. Tian Canonical measures and Kähler-Ricci flow, J. Am. Math. Soc., Volume 25 (2012), pp. 303-353 | MR | DOI | Zbl

[SoTi09] J. Song and G. Tian, The Kähler-Ricci flow through singularities, preprint (2009), . | arXiv | MR

[SzTo11] G. Székelyhidi; V. Tosatti Regularity of weak solutions of a complex Monge-Ampère equation, Anal. PDE, Volume 4 (2011), pp. 369-378 | MR | Zbl | DOI

[Tia90] G. Tian On a set of polarized Kähler metrics on algebraic manifolds, J. Differ. Geom., Volume 32 (1990), pp. 99-130 | Zbl | MR

[Tia97] G. Tian Kähler-Einstein metrics with positive scalar curvature, Invent. Math., Volume 130 (1997), pp. 239-265 | MR | Zbl | DOI

[Tian] G. Tian Canonical Metrics in Kähler Geometry, Lectures in Mathematics ETH Zürich, Birkhäuser, Basel, 2000 | Zbl | MR | DOI

[Tsu10] H. Tsuji Dynamical construction of Kähler-Einstein metrics, Nagoya Math. J., Volume 199 (2010), pp. 107-122 | MR | Zbl

[Wan05] X. Wang Canonical metrics on stable vector bundles, Commun. Anal. Geom., Volume 13 (2005), pp. 253-285 | Zbl | MR

[Yau78] S. T. Yau On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I, Commun. Pure Appl. Math., Volume 31 (1978), pp. 339-411 | Zbl | MR | DOI

[Zel98] S. Zelditch Szegö kernels and a theorem of Tian, Int. Math. Res. Not., Volume 6 (1998), pp. 317-331 | MR | Zbl | DOI

[Zer01] A. Zeriahi Volume and capacity of sublevel sets of a Lelong class of psh functions, Indiana Univ. Math. J., Volume 50 (2001), pp. 671-703 | MR | DOI | Zbl

Cited by Sources: