On Stably Free Modules over Affine Algebras
Publications Mathématiques de l'IHÉS, Volume 116 (2012), pp. 223-243

If X is a smooth affine variety of dimension d over an algebraically closed field k, and if (d−1)!∈k × then any stably trivial vector bundle of rank (d−1) over X is trivial. The hypothesis that X is smooth can be weakened to X is normal if d≥4.

Received:
Accepted:
Online First:
Published online:
DOI: 10.1007/s10240-012-0041-y

J. Fasel 1; R. A. Rao 2; R. G. Swan 3

1 Mathematisches Institut der Universität München Theresienstrasse 39, 80333, München Germany
2 Tata Institute of Fundamental Research 1, Dr. Homi Bhabha Road, Navy Nagar, Mumbai, 400 005 India
3 University of Chicago Chicago, IL, 60637 USA
@article{PMIHES_2012__116__223_0,
     author = {J. Fasel and R. A. Rao and R. G. Swan},
     title = {On {Stably} {Free} {Modules} over {Affine} {Algebras}},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {223--243},
     year = {2012},
     publisher = {Springer-Verlag},
     volume = {116},
     doi = {10.1007/s10240-012-0041-y},
     mrnumber = {3090257},
     zbl = {1256.13008},
     language = {en},
     url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-012-0041-y/}
}
TY  - JOUR
AU  - J. Fasel
AU  - R. A. Rao
AU  - R. G. Swan
TI  - On Stably Free Modules over Affine Algebras
JO  - Publications Mathématiques de l'IHÉS
PY  - 2012
SP  - 223
EP  - 243
VL  - 116
PB  - Springer-Verlag
UR  - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-012-0041-y/
DO  - 10.1007/s10240-012-0041-y
LA  - en
ID  - PMIHES_2012__116__223_0
ER  - 
%0 Journal Article
%A J. Fasel
%A R. A. Rao
%A R. G. Swan
%T On Stably Free Modules over Affine Algebras
%J Publications Mathématiques de l'IHÉS
%D 2012
%P 223-243
%V 116
%I Springer-Verlag
%U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-012-0041-y/
%R 10.1007/s10240-012-0041-y
%G en
%F PMIHES_2012__116__223_0
J. Fasel; R. A. Rao; R. G. Swan. On Stably Free Modules over Affine Algebras. Publications Mathématiques de l'IHÉS, Volume 116 (2012), pp. 223-243. doi: 10.1007/s10240-012-0041-y

[1.] J. Kristinn Arason; A. Pfister Beweis des Krullschen Durchschnittsatzes für den Wittring, Invent. Math., Volume 12 (1971), pp. 173-176 | MR | Zbl | DOI

[2.] P. Balmer An introduction to triangular Witt groups and a survey of applications, Algebraic and Arithmetic Theory of Quadratic Forms (Contemp. Math., 344), Amer. Math. Soc., Providence (2004), pp. 31-58 | MR | Zbl | DOI

[3.] P. Balmer; C. Walter A Gersten-Witt spectral sequence for regular schemes, Ann. Sci. Éc. Norm. Super., Volume 35 (2002) no. 1, pp. 127-152 | MR | Zbl | Numdam

[4.] J. Barge; J. Lannes Suites de Sturm, indice de Maslov et périodicité de Bott, Progress in Mathematics, 267, Birkhäuser, Basel, 2008 | Zbl | MR

[5.] H. Bass K-theory and stable algebra, Inst. Hautes Études Sci. Publ. Math., Volume 22 (1964), pp. 5-60 | DOI | MR | Zbl | Numdam

[6.] H. Bass Algebraic K-theory, Benjamin, New York, 1968 | Zbl | MR

[7.] H. Bass Libération des modules projectifs sur certains anneaux de polynômes, Séminaire Bourbaki, 26e année (1973/1974), Exp. No. 448 (Lecture Notes in Math., 431), Springer, Berlin (1975), pp. 228-354 | MR | Zbl | Numdam

[8.] S. M. Bhatwadekar A cancellation theorem for projective modules over affine algebras over C1-fields, J. Pure Appl. Algebra, Volume 1–3 (2003), pp. 17-26 | MR | Zbl | DOI

[9.] S. Bloch Torsion algebraic cycles, K 2, and Brauer groups of function fields, The Brauer Group (Sem., Les Plans-sur-Bex, 1980) (Lecture Notes in Math., 844), Springer, Berlin (1981), pp. 75-102 | MR | Zbl

[10.] S. Bloch; A. Ogus Gersten’s conjecture and the homology of schemes, Ann. Sci. Éc. Norm. Super., Volume 7 (1975), pp. 181-201 (1974.) | MR | Zbl | Numdam

[11.] J.-L. Colliot-Thélène; C. Scheiderer Zero-cycles and cohomology on real algebraic varieties, Topology, Volume 35 (1996) no. 2, pp. 533-559 | MR | Zbl | DOI

[12.] J. Fasel; V. Srinivas A vanishing theorem for oriented intersection multiplicities, Math. Res. Lett., Volume 15 (2008) no. 3, pp. 447-458 | MR | Zbl

[13.] J. Fasel; V. Srinivas Chow-Witt groups and Grothendieck-Witt groups of regular schemes, Adv. Math., Volume 221 (2009), pp. 302-329 | MR | Zbl | DOI

[14.] J. Fasel Stably free modules over smooth affine threefolds, Duke Math. J., Volume 156 (2011), pp. 33-49 | MR | Zbl | DOI

[15.] D. R. Grayson Universal exactness in algebraic K-theory, J. Pure Appl. Algebra, Volume 36 (1985), pp. 139-141 | MR | Zbl | DOI

[16.] J. Hornbostel Constructions and dévissage in Hermitian K-theory, K-Theory, Volume 26 (2002), pp. 139-170 | MR | Zbl | DOI

[17.] M. Karoubi Périodicité de la K-théorie hermitienne, Algebraic K-theory, III: Hermitian K-Theory and Geometric Applications (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) (Lecture Notes in Math., 343), Springer, Berlin (1973), pp. 301-411 | Zbl

[18.] M. Karoubi Le théorème fondamental de la K-théorie hermitienne, Ann. Math., Volume 112 (1980), pp. 259-282 | MR | Zbl | DOI

[19.] N. Mohan Kumar Stably free modules, Am. J. Math., Volume 107 (1985), pp. 1439-1444 | MR | Zbl | DOI

[20.] A. S. Merkur´ev; A. A. Suslin K-cohomology of Severi-Brauer varieties and the norm residue homomorphism, Izv. Akad. Nauk SSSR Ser. Mat., Volume 46 (1982), pp. 1011-1046 (1135–1136) | MR | Zbl

[21.] J. S. Milne Étale cohomology, Princeton Mathematical Series, 33, Princeton University Press, Princeton, 1980 | Zbl

[22.] J. Milnor Algebraic K-theory and quadratic forms, Invent. Math., Volume 9 (1969/1970), pp. 318-344 | MR | Zbl | DOI

[23.] J. Milnor Introduction to algebraic K-theory, Annals of Mathematics Studies, 72, Princeton University Press, Princeton, 1971 | Zbl

[24.] D. Orlov; A. Vishik; V. Voevodsky An exact sequence for K M /2 with applications to quadratic forms, Ann. Math., Volume 165 (2007), pp. 1-13 | MR | Zbl | DOI

[25.] R. A. Rao The Bass-Quillen conjecture in dimension three but characteristic 2,3 via a question of A. Suslin, Invent. Math., Volume 93 (1988), pp. 609-618 | MR | Zbl | DOI

[26.] R. A. Rao A stably elementary homotopy, Proc. Am. Math. Soc., Volume 137 (2009), pp. 3637-3645 | Zbl | DOI

[27.] R. A. Rao; W. Kallen Improved stability for SK 1 and WMS d of a non-singular affine algebra, Astérisque, Volume 226 (1994), pp. 411-420 K-theory (Strasbourg, 1992) | Zbl | Numdam

[28.] M. Roitman On unimodular rows, Proc. Am. Math. Soc., Volume 95 (1985), pp. 184-188 | MR | Zbl | DOI

[29.] M. Schlichting Hermitian K-theory of exact categories, K-Theory, Volume 5 (2010), pp. 105-165 | MR | Zbl | DOI

[30.] M. Schlichting The Mayer-Vietoris principle for Grothendieck-Witt groups of schemes, Invent. Math., Volume 179 (2010), pp. 349-433 | MR | Zbl | DOI

[31.] J.-P. Serre Cohomologie Galoisienne, Lecture Notes in Mathematics, 5, Springer, Berlin, 1994 | Zbl

[32.] A. A. Suslin Torsion in K 2 of fields, K-Theory, Volume 1 (1987), pp. 5-29 | MR | Zbl | DOI

[33.] A. A. Suslin A cancellation theorem for projective modules over algebras, Dokl. Akad. Nauk SSSR, Volume 236 (1977), pp. 808-811 (in Russian). | MR | Zbl

[34.] A. A. Suslin, On stably free modules, Math. U.S.S.R. Sbornik, (1977), 479–491. doi:10.1070/SM1977v031n04ABEH003717 | Zbl

[35.] A. A. Suslin Cancellation for affine varieties. (russian) modules and algebraic groups, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (L.O.M.I.), Volume 114 (1982), pp. 187-195 | MR | Zbl

[36.] A. A. Suslin Torsion in K 2 of fields, K-Theory, Volume 1 (1987), pp. 5-29 | MR | Zbl | DOI

[37.] R. G. Swan A cancellation theorem for projective modules in the metastable range, Invent. Math., Volume 27 (1974), pp. 23-43 | MR | Zbl | DOI

[38.] W. Kallen A module structure on certain orbit sets of unimodular rows, J. Pure Appl. Algebra, Volume 57 (1989) no. 3, pp. 281-316 | MR | Zbl | DOI

[39.] L. N. Vaserstein Operations on orbits of unimodular vectors, J. Algebra, Volume 100 (1986), pp. 456-461 | MR | Zbl | DOI

[40.] L. N. Vaserstein; A. A. Suslin Serre’s problem on projective modules over polynomial rings, and algebraic k-theory, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 40 (1976), pp. 993-1054 | MR | Zbl

[41.] V. Voevodsky Motivic cohomology with Z/2-coefficients, Publ. Math. Inst. Hautes Études Sci., Volume 98 (2003), pp. 59-104 | DOI | MR | Zbl | Numdam

[42.] T. Vorst The general linear group of polynomial rings over regular rings, Commun. Algebra, Volume 9 (1981), pp. 499-509 | MR | Zbl | DOI

Cited by Sources: