Cohomological Hasse principle and motivic cohomology for arithmetic schemes
Publications Mathématiques de l'IHÉS, Volume 115 (2012), pp. 123-183

In 1985 Kazuya Kato formulated a fascinating framework of conjectures which generalizes the Hasse principle for the Brauer group of a global field to the so-called cohomological Hasse principle for an arithmetic scheme X. In this paper we prove the prime-to-characteristic part of the cohomological Hasse principle. We also explain its implications on finiteness of motivic cohomology and special values of zeta functions.

Received:
Accepted:
Online First:
Published online:
DOI: 10.1007/s10240-011-0038-y

Moritz Kerz 1; Shuji Saito 2

1 Fachbereich Mathematik, Universität Duisburg-Essen Campus Essen, 45117, Essen Germany
2 Interactive Research Center of Science, Graduate School of Science and Engineering, Tokyo Institute of Technology Ookayama, Meguro, Tokyo, 152-8551 Japan
@article{PMIHES_2012__115__123_0,
     author = {Moritz Kerz and Shuji Saito},
     title = {Cohomological {Hasse} principle and motivic cohomology for arithmetic schemes},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {123--183},
     year = {2012},
     publisher = {Springer-Verlag},
     volume = {115},
     doi = {10.1007/s10240-011-0038-y},
     mrnumber = {2929729},
     zbl = {1263.14026},
     language = {en},
     url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-011-0038-y/}
}
TY  - JOUR
AU  - Moritz Kerz
AU  - Shuji Saito
TI  - Cohomological Hasse principle and motivic cohomology for arithmetic schemes
JO  - Publications Mathématiques de l'IHÉS
PY  - 2012
SP  - 123
EP  - 183
VL  - 115
PB  - Springer-Verlag
UR  - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-011-0038-y/
DO  - 10.1007/s10240-011-0038-y
LA  - en
ID  - PMIHES_2012__115__123_0
ER  - 
%0 Journal Article
%A Moritz Kerz
%A Shuji Saito
%T Cohomological Hasse principle and motivic cohomology for arithmetic schemes
%J Publications Mathématiques de l'IHÉS
%D 2012
%P 123-183
%V 115
%I Springer-Verlag
%U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-011-0038-y/
%R 10.1007/s10240-011-0038-y
%G en
%F PMIHES_2012__115__123_0
Moritz Kerz; Shuji Saito. Cohomological Hasse principle and motivic cohomology for arithmetic schemes. Publications Mathématiques de l'IHÉS, Volume 115 (2012), pp. 123-183. doi: 10.1007/s10240-011-0038-y

[SGA4] M. Artin; A. Grothendieck; J. L. Verdier Theorie des Topos et Cohomologie étale des Schemas, vol. 3, Lecture Notes in Math., 305, Springer, Berlin, 1973 | Zbl

[B] S. Bloch Algebraic cycles and higher algebraic K-theory, Adv. Math., Volume 61 (1986), pp. 267-304 | MR | Zbl | DOI

[BK] S. Bloch; K. Kato p-adic etale cohomology, Publ. Math. IHES, Volume 63 (1986), pp. 107-152 | MR | Zbl | Numdam

[BO] S. Bloch; A. Ogus Gersten’s conjecture and the homology of schemes, Ann. Sci. Éc. Norm. Super. 4 ser., Volume 7 (1974), pp. 181-202 | MR | Zbl | Numdam

[CT] J.-L. Colliot-Thélène On the reciprocity sequence in the higher class field theory of function fields, Algebraic K-Theory and Algebraic Topology, Kluwer Academic, Dordrecht (1993), pp. 35-55 | MR | Zbl

[CTSS] J.-L. Colliot-Thélène; J.-J. Sansuc; C. Soulé Torsion dans le groupe de Chow de codimension deux, Duke Math. J., Volume 50 (1983), pp. 763-801 | MR | Zbl | DOI

[CTHK] J.-L. Colliot-Thélène; R. Hoobler; B. Kahn The Bloch-Ogus-Gabber theorem, Algebraic K-theory (Fields Inst. Commun., 16), Amer. Math. Soc., Providence (1997), pp. 31-94 | MR | Zbl

[CJS] V. Cossart, U. Jannsen, and S. Saito, Resolution of singularities for embedded surfaces, in preparation (see www.mathematik.uni-regensburg.de/Jannsen).

[Deg] F. Déglise Transferts sur les groupes de Chow á coefficients, Math. Z., Volume 252 (2006), pp. 315-343 | MR | Zbl | DOI

[D] P. Deligne La conjecture de Weil II, Publ. Math. IHES, Volume 52 (1981), pp. 313-428 | Numdam | MR | Zbl

[FG] K. Fujiwara A proof of the absolute purity conjecture (after Gabber), Algebraic Geometry, Azumino 2001 (Adv. Stud. in Pure Math., 36), Math. Soc. Japan, Tokyo (2002), pp. 153-184 | MR | Zbl

[F] W. Fulton Intersection Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3, Springer, Berlin, 1998 | Zbl | DOI

[Ga] O. Gabber On space filling curves and Albanese varieties, Geom. Funct. Anal., Volume 11 (2001), pp. 1192-1200 | MR | Zbl | DOI

[Ge1] T. Geisser Motivic cohomology over Dedekind rings, Math. Z., Volume 248 (2004), pp. 773-794 | MR | Zbl | DOI

[Ge2] T. Geisser Weil-étale cohomology over finite fields, Math. Ann., Volume 330 (2004), pp. 665-692 | MR | Zbl | DOI

[Ge3] T. Geisser Arithmetic cohomology over finite fields and special values of ζ-functions, Duke Math. J., Volume 133 (2006), pp. 27-57 | MR | Zbl | DOI

[Ge4] T. Geisser Arithmetic homology and an integral version of Kato’s conjecture, J. Reine Angew. Math., Volume 644 (2010), pp. 1-22 | MR | Zbl | DOI

[GL] T. Geisser; M. Levine The Bloch-Kato conjecture and a theorem of Suslin-Voevodsky, J. Reine Angew., Volume 530 (2001), pp. 55-103 | MR | Zbl | DOI

[GS] H. Gillet; C. Soulé Descent, motives and K-theory, J. Reine Angew. Math., Volume 478 (1996), pp. 127-176 | MR | Zbl

[Gr] M. Gros Sur la partie p-primaire du groupe de Chow de codimension deux, Commun. Algebra, Volume 13 (1985), pp. 2407-2420 | MR | Zbl | DOI

[GrSw] M. Gros; N. Suwa Application d’Abel-Jacobi p-adique et cycles algébriques, Duke Math. J., Volume 57 (1988), pp. 579-613 | MR | Zbl | DOI

[EGAII] A. Grothendieck and J. Dieudonné, Éléments de Géométrie Algébrique, II Étude globale élémentaire de quelques classes de morphismes, Publ. Math. IHES, 8 (1961). | MR | Zbl | Numdam

[HW] C. Haesemeyer; C. Weibel Norm Varieties and the Chain Lemma (after Markus Rost), Abel Symposium, Springer, Berlin (2009), pp. 95-130 | MR | Zbl

[H] H. Hironaka Resolution of singularities of an algebraic variety over a field of characteristic zero: I-II, Ann. Math., Volume 79 (1964), pp. 109-326 | MR | Zbl | DOI

[Il1] L. Illusie Complexe de De Rham-Witt et cohomologie cristalline, Ann. Sci. Éc. Norm. Super., Volume 12 (1979), pp. 501-661 | MR | Zbl | Numdam

[Il2] L. Illusie, On Gabber’s refined uniformization, preprint available at http://www.math.u-psud.fr/~illusie/.

[Il3] L. Illusie Perversité et variation, Manuscr. Math., Volume 112 (2003), pp. 271-295 | MR | Zbl | DOI

[J1] U. Jannsen Mixed Motives and Algebraic K-theory, Lecture Notes in Mathematics, 1400, Springer, Berlin, 1990 | MR | Zbl

[J2] U. Jannsen, Hasse principles for higher dimensional fields, . | arXiv

[J3] U. Jannsen, Rigidity Results on K-cohomology and Other Functors, in preparation (see www.mathematik.uni-regensburg.de/Jannsen).

[JS1] U. Jannsen; S. Saito Kato homology of arithmetic schemes and higher class field theory, Documenta Math. Extra Volume: Kazuya Kato’s Fiftieth Birthday (2003), pp. 479-538 | MR | Zbl

[JS2] U. Jannsen and S. Saito, Kato homology and motivic cohomology over finite fields, . | arXiv

[JS3] U. Jannsen and S. Saito, Bertini theorems and Lefschetz pencils over discrete valuation rings, with applications to higher class field theory, J. Algebr. Geom., to appear. | MR | Zbl

[JSS] U. Jannsen, S. Saito, and K. Sato, Etale duality for constructible sheaves on arithmetic schemes, . | arXiv | Zbl

[K] K. Kato A Hasse principle for two dimensional global fields, J. Reine Angew. Math., Volume 366 (1986), pp. 142-183 | MR | Zbl

[KS] K. Kato; S. Saito Unramified class field theory of arithmetic surfaces, Ann. Math., Volume 118 (1985), pp. 241-275 | MR | Zbl | DOI

[KeS] M. Kerz and S. Saito, Cohomological Hasse principle and McKay principle for weight homology, preprint available at . | arXiv

[Le] M. Levine, K-theory and motivic cohomology of schemes, preprint.

[Li1] S. Lichtenbaum Values of zeta functions at non-negative integers, Number Theory, Noordwijkerhout (Lecture Notes in Math., 1068) (1983), pp. 127-138 | MR | Zbl | DOI

[Li2] S. Lichtenbaum Weil-étale topology on schemes over finite fields, Compos. Math., Volume 141 (2005), pp. 689-702 (127–138) | MR | Zbl | DOI

[M1] J. S. Milne Duality in the flat cohomology of a surface, Ann. Sci. Éc. Norm. Super. 4 ser., Volume 9 (1976), pp. 171-201 | MR | Numdam | Zbl

[M2] J. S. Milne Values of zeta-functions of varieties over finite fields, Am. J. Math., Volume 108 (1986), pp. 297-360 | MR | Zbl | DOI

[M3] J. S. Milne Motivic cohomology and values of zeta-functions, Compos. Math., Volume 68 (1988), pp. 59-102 | MR | Zbl | Numdam

[Mi] J. Milnor Algebraic K-theory and quadratic forms, Invent. Math., Volume 9 (1970), pp. 318-344 | MR | Zbl | DOI

[NS] Yu. Nesterenko; A. Suslin Homology of the general linear group over a local ring, and Milnor’s K-theory, Math. USSR, Izv., Volume 34 (1990), pp. 121-145 | MR | Zbl | DOI

[Pa] K. H. Paranjape Some spectral sequences for filtered complexes, J. Algebra, Volume 186 (1996), pp. 793-806 | MR | Zbl | DOI

[P] B. Poonen Bertini theorems over finite fields, Ann. Math., Volume 160 (2004), pp. 1099-1127 | MR | Zbl | DOI

[R] M. Rost Chow groups with coefficients, Doc. Math., Volume 1 (1996), pp. 319-393 | MR | Zbl

[Sa1] S. Saito Unramified class field theory of arithmetic schemes, Ann. Math., Volume 121 (1985), pp. 251-281 | Zbl | MR | DOI

[Sa2] S. Saito Cohomological Hasse principle for a threefold over a finite field, Algebraic K-Theory and Algebraic Topology (NATO ASI Series, 407), Kluwer Academic, Dordrecht (1994), pp. 229-241 | MR | Zbl

[Sa3] S. Saito Recent progress on the Kato conjecture, Quadratic Forms, Linear Algebraic Groups, and Cohomology (Developments in Math., 18) (2010), pp. 109-124 | MR | Zbl | DOI

[SS] S. Saito; K. Sato A finiteness theorem for zero-cycles over p-adic fields, Ann. Math., Volume 172 (2010), pp. 1593-1639 | MR | Zbl | DOI

[Sat] K. Sato, Characteristic classes for p-adic étale Tate twists and the image of p-adic regulators, preprint available at . | arXiv | MR | Zbl

[SV] A. Suslin; V. Voevodsky Bloch-Kato conjecture and motivic cohomology with finite coefficients, Cycles, Transfer, and Motivic Homology Theories (Annals of Math. Studies), Princeton University Press, Princeton (1999) | Zbl

[SJ] A. Suslin; S. Joukhovitski Norm varieties, J. Pure Appl. Algebra, Volume 206 (2006), pp. 245-276 | MR | Zbl | DOI

[Sw] N. Suwa A note on Gersten’s conjecture for logarithmic Hodge-Witt sheaves, K-Theory, Volume 9 (1995), pp. 245-271 | MR | Zbl | DOI

[To] B. Totaro Milnor K-theory is the simplest part of algebraic K-theory, K-Theory, Volume 6 (1992), pp. 177-189 | MR | Zbl | DOI

[V1] V. Voevodsky On motivic cohomology with ℤ/-coefficients, Ann. Math., Volume 174 (2011), pp. 401-438 | MR | Zbl | DOI

[V2] V. Voevodsky Motivic Eilenberg-MacLane spaces, Publ. Math. IHES, Volume 112 (2010), pp. 1-99 | Zbl | MR | Numdam | DOI

Cited by Sources: