Differential forms on log canonical spaces
Publications Mathématiques de l'IHÉS, Volume 114 (2011), pp. 87-169

The present paper is concerned with differential forms on log canonical varieties. It is shown that any p-form defined on the smooth locus of a variety with canonical or klt singularities extends regularly to any resolution of singularities. In fact, a much more general theorem for log canonical pairs is established. The proof relies on vanishing theorems for log canonical varieties and on methods of the minimal model program. In addition, a theory of differential forms on dlt pairs is developed. It is shown that many of the fundamental theorems and techniques known for sheaves of logarithmic differentials on smooth varieties also hold in the dlt setting.

Immediate applications include the existence of a pull-back map for reflexive differentials, generalisations of Bogomolov-Sommese type vanishing results, and a positive answer to the Lipman-Zariski conjecture for klt spaces.

Received:
Accepted:
Online First:
Published online:
DOI: 10.1007/s10240-011-0036-0

Daniel Greb 1; Stefan Kebekus 1; Sándor J Kovács 2; Thomas Peternell 3

1 Mathematisches Institut, Albert-Ludwigs-Universität Freiburg Eckerstraße 1, 79104, Freiburg im Breisgau Germany
2 Department of Mathematics, University of Washington Box 354350, Seattle, WA, 98195 USA
3 Matematisches Institut, Universität Bayreuth 95440, Bayreuth Germany
@article{PMIHES_2011__114__87_0,
     author = {Daniel Greb and Stefan Kebekus and S\'andor J Kov\'acs and Thomas Peternell},
     title = {Differential forms on log canonical spaces},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {87--169},
     year = {2011},
     publisher = {Springer-Verlag},
     volume = {114},
     doi = {10.1007/s10240-011-0036-0},
     zbl = {1258.14021},
     language = {en},
     url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-011-0036-0/}
}
TY  - JOUR
AU  - Daniel Greb
AU  - Stefan Kebekus
AU  - Sándor J Kovács
AU  - Thomas Peternell
TI  - Differential forms on log canonical spaces
JO  - Publications Mathématiques de l'IHÉS
PY  - 2011
SP  - 87
EP  - 169
VL  - 114
PB  - Springer-Verlag
UR  - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-011-0036-0/
DO  - 10.1007/s10240-011-0036-0
LA  - en
ID  - PMIHES_2011__114__87_0
ER  - 
%0 Journal Article
%A Daniel Greb
%A Stefan Kebekus
%A Sándor J Kovács
%A Thomas Peternell
%T Differential forms on log canonical spaces
%J Publications Mathématiques de l'IHÉS
%D 2011
%P 87-169
%V 114
%I Springer-Verlag
%U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-011-0036-0/
%R 10.1007/s10240-011-0036-0
%G en
%F PMIHES_2011__114__87_0
Daniel Greb; Stefan Kebekus; Sándor J Kovács; Thomas Peternell. Differential forms on log canonical spaces. Publications Mathématiques de l'IHÉS, Volume 114 (2011), pp. 87-169. doi: 10.1007/s10240-011-0036-0

[Bar78] D. Barlet Le faisceau ω X · sur un espace analytique X de dimension pure, Fonctions de plusieurs variables complexes III (Sém. François Norguet, 1975–1977) (Lecture Notes in Math., 670), Springer, Berlin (1978), pp. 187-204 | Zbl | DOI | MR

[BS95] M. C. Beltrametti; A. J. Sommese The Adjunction Theory of Complex Projective Varieties, de Gruyter Expositions in Mathematics, 16, de Gruyter, Berlin, 1995 ( 96f:14004 ) | Zbl

[BCHM10] C. Birkar; P. Cascini; C. D. Hacon; J. McKernan Existence of minimal models for varieties of log general type, J. Am. Math. Soc., Volume 23 (2010), pp. 405-468 | MR | Zbl | DOI

[Cam04] F. Campana Orbifolds, special varieties and classification theory, Ann. Inst. Fourier (Grenoble), Volume 54 (2004), pp. 499-630 | DOI | MR | Zbl | Numdam

[Car85] J. A. Carlson Polyhedral resolutions of algebraic varieties, Trans. Am. Math. Soc., Volume 292 (1985), pp. 595-612 | Zbl | DOI | MR

[{Cor}07] A. Corti et al. Flips for 3-Folds and 4-Folds, Oxford Lecture Series in Mathematics and Its Applications, 35, Oxford University Press, Oxford, 2007 | Zbl | DOI | MR

[Del70] P. Deligne Équations différentielles à points singuliers réguliers, Lecture Notes in Mathematics, 163, Springer, Berlin, 1970 ( 54 #5232 ) | Zbl

[DB81] P. Du Bois Complexe de de Rham filtré d’une variété singulière, Bull. Soc. Math. Fr., Volume 109 (1981), pp. 41-81 | Zbl | MR | Numdam

[DBJ74] P. Du Bois; P. Jarraud Une propriété de commutation au changement de base des images directes supérieures du faisceau structural, C. R. Acad. Sci. Paris Sér. A, Volume 279 (1974), pp. 745-747 | MR | Zbl

[dJS04] A. J. Jong; J. Starr Cubic fourfolds and spaces of rational curves, Ill. J. Math., Volume 48 (2004), pp. 415-450 | Zbl | MR

[EV82] H. Esnault; E. Viehweg Revêtements cycliques, Algebraic threefolds (Lecture Notes in Mathematics, 947), Springer, Berlin (1982), pp. 241-250 | Zbl | DOI | MR

[EV90] H. Esnault; E. Viehweg Effective bounds for semipositive sheaves and for the height of points on curves over complex function fields, Compos. Math., Volume 76 (1990), pp. 69-85 Algebraic geometry (Berlin, 1988). | MR | Zbl | Numdam

[EV92] H. Esnault; E. Viehweg Lectures on Vanishing Theorems, DMV Seminar, 20, Birkhäuser, Basel, 1992 | Zbl | DOI | MR

[FGI+05] B. Fantechi; L. Göttsche; L. Illusie; S. L. Kleiman; N. Nitsure; A. Vistoli Fundamental Algebraic Geometry, Mathematical Surveys and Monographs, 123, American Mathematical Society, Providence, 2005 (Grothendieck’s FGA explained.) | Zbl | MR

[Fle88] H. Flenner Extendability of differential forms on nonisolated singularities, Invent. Math., Volume 94 (1988), pp. 317-326 | MR | Zbl | DOI

[Fog69] J. Fogarty Invariant Theory, W. A. Benjamin, Inc., New York, 1969 | Zbl | MR

[God73] R. Godement Topologie algébrique et théorie des faisceaux, Hermann, Paris, 1973 (Troisième édition revue et corrigée, Publications de l’Institut de Mathématique de l’Université de Strasbourg, XIII, Actualités Scientifiques et Industrielles, No. 1252.) | Zbl | MR

[Gra72] H. Grauert Über die Deformation isolierter Singularitäten analytischer Mengen, Invent. Math., Volume 15 (1972), pp. 171-198 | MR | Zbl | DOI

[GR70] H. Grauert; O. Riemenschneider Verschwindungssätze für analytische Kohomologiegruppen auf komplexen Räumen, Invent. Math., Volume 11 (1970), pp. 263-292 | MR | Zbl | DOI

[GKK10] D. Greb; S. Kebekus; S. J. Kovács Extension theorems for differential forms, and Bogomolov-Sommese vanishing on log canonical varieties, Compos. Math., Volume 146 (2010), pp. 193-219 | MR | Zbl | DOI

[GKKP10] D. Greb, S. Kebekus, S. J. Kovács, and T. Peternell, Differential forms on log canonical varieties, Extended version of the present paper, including more detailed proofs and color figures. March 2010. | arXiv

[GLS07] G.-M. Greuel; C. Lossen; E. Shustin Introduction to Singularities and Deformations, Springer Monographs in Mathematics, Springer, Berlin, 2007 | Zbl | MR

[Gre80] G.-M. Greuel Dualität in der lokalen Kohomologie isolierter Singularitäten, Math. Ann., Volume 250 (1980), pp. 157-173 | MR | Zbl

[Gro60] A. Grothendieck Éléments de géométrie algébrique. I. Le langage des schémas, Inst. Hautes Études Sci. Publ. Math., Volume 4 (1960), p. 228 | Numdam | Zbl | DOI | MR

[Gro71] A. Grothendieck Revêtements étales et groupe fondamental, Lecture Notes in Mathematics, 224, Springer, Berlin, 1971 Séminaire de Géométrie Algébrique du Bois Marie 1960–1961 (SGA 1), Dirigé par Alexandre Grothendieck. Augmenté de deux exposés de M. Raynaud. | Zbl | MR

[GNPP88] F. Guillén; V. Navarro Aznar; P. Pascual Gainza; F. Puerta Hyperrésolutions cubiques et descente cohomologique, Lecture Notes in Mathematics, 1335, Springer, Berlin, 1988 (Papers from the Seminar on Hodge-Deligne Theory held in Barcelona, 1982.) | Zbl | MR

[HK10] C. D. Hacon; S. J. Kovács Classification of Higher Dimensional Algebraic Varieties, Oberwolfach Seminars, Birkhäuser, Boston, 2010 | Zbl | DOI

[HM07] C. D. Hacon; J. McKernan On Shokurov’s rational connectedness conjecture, Duke Math. J., Volume 138 (2007), pp. 119-136 | MR | Zbl | DOI

[Har77] R. Hartshorne Algebraic Geometry, Graduate Texts in Mathematics, 52, Springer, New York, 1977 | Zbl | MR

[HM89] H. Hauser; G. Müller The trivial locus of an analytic map germ, Ann. Inst. Fourier (Grenoble), Volume 39 (1989), pp. 831-844 | DOI | MR | Zbl | Numdam

[Hei91] P. Heinzner Geometric invariant theory on Stein spaces, Math. Ann., Volume 289 (1991), pp. 631-662 | MR | Zbl | DOI

[Hir62] H. Hironaka On resolution of singularities (characteristic zero), Proc. Int. Cong. Math. (1962), pp. 507-521 | Zbl

[Hoc75] M. Hochster The Zariski-Lipman conjecture for homogeneous complete intersections, Proc. Am. Math. Soc., Volume 49 (1975), pp. 261-262 | MR | Zbl

[Hol61] H. Holmann Quotienten komplexer Räume, Math. Ann., Volume 142 (1960/1961), pp. 407-440 | MR | Zbl | DOI

[HL97] D. Huybrechts; M. Lehn The Geometry of Moduli Spaces of Sheaves, Aspects of Mathematics, E31, Friedr. Vieweg & Sohn, Braunschweig, 1997 | Zbl | MR

[JK09a] K. Jabbusch and S. Kebekus, Families over special base manifolds and a conjecture of Campana, Math. Z., to appear. doi:10.1007/s00209-010-0758-6, , May 2009. | arXiv | Zbl

[JK09b] K. Jabbusch and S. Kebekus, Positive sheaves of differentials on coarse moduli spaces, Ann. Inst. Fourier (Grenoble), to appear. April 2009. | arXiv | Zbl | Numdam

[Kaw88] Y. Kawamata Crepant blowing-up of 3-dimensional canonical singularities and its application to degenerations of surfaces, Ann. Math., Volume 127 (1988), pp. 93-163 | MR | Zbl | DOI

[KK07] S. Kebekus and S. J. Kovács, The structure of surfaces mapping to the moduli stack of canonically polarized varieties, preprint (July 2007). | arXiv

[KK08] S. Kebekus; S. J. Kovács Families of canonically polarized varieties over surfaces, Invent. Math., Volume 172 (2008), pp. 657-682 | MR | Zbl | DOI

[KK10a] S. Kebekus; S. J. Kovács The structure of surfaces and threefolds mapping to the moduli stack of canonically polarized varieties, Duke Math. J., Volume 155 (2010), pp. 1-33 | MR | Zbl | DOI | arXiv

[Kol] J. Kollár, Algebraic groups acting on schemes, Undated, unfinished manuscript. Available on the author’s website at www.math.princeton.edu/~kollar.

[Kol96] J. Kollár Rational Curves on Algebraic Varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, A Series of Modern Surveys in Mathematics, 32, Springer, Berlin, 1996 | Zbl | MR

[Kol07] J. Kollár Lectures on Resolution of Singularities, Annals of Mathematics Studies, 166, Princeton University Press, Princeton, 2007 | Zbl | MR

[KK10b] J. Kollár; S. J. Kovács Log canonical singularities are Du Bois, J. Am. Math. Soc., Volume 23 (2010), pp. 791-813 | Zbl | DOI

[KM98] J. Kollár; S. Mori Birational Geometry of Algebraic Varieties, Cambridge Tracts in Mathematics, 134, Cambridge University Press, Cambridge, 1998 (With the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original. 2000b:14018 ) | Zbl | DOI

[{Kol}92] J. Kollár et al. Flips and Abundance for Algebraic Threefolds, Astérisque, 211, Société Mathématique de France, Paris, 1992 Papers from the Second Summer Seminar on Algebraic Geometry held at the University of Utah, Salt Lake City, Utah, August 1991 (1992). | Zbl | MR | Numdam

[KS09] S. J. Kovács; K. Schwede Hodge theory meets the minimal model program: a survey of log canonical and Du Bois singularities, Topology of Stratified (2001), pp. 51-94

[Lau73] H. B. Laufer Taut two-dimensional singularities, Math. Ann., Volume 205 (1973), pp. 131-164 | MR | Zbl | DOI

[Lip65] J. Lipman Free derivation modules on algebraic varieties, Am. J. Math., Volume 87 (1965), pp. 874-898 | MR | Zbl | DOI

[Loj64] S. Lojasiewicz Triangulation of semi-analytic sets, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 18 (1964), pp. 449-474 | MR | Zbl | Numdam

[ML95] S. Mac Lane Homology, Classics in Mathematics, Springer, Berlin, 1995 (Reprint of the 1975 edition.) | Zbl | MR

[{Mas}1899] H. Maschke Beweis des Satzes, dass diejenigen endlichen linearen Substitutionsgruppen, in welchen einige durchgehends verschwindende Coefficienten auftreten, intransitiv sind, Math. Ann., Volume 52 (1899), pp. 363-368 | MR | JFM | DOI

[Nam01] Y. Namikawa Extension of 2-forms and symplectic varieties, J. Reine Angew. Math., Volume 539 (2001), pp. 123-147 | MR | Zbl | DOI

[OSS80] C. Okonek; M. Schneider; H. Spindler Vector Bundles on Complex Projective Spaces, Progress in Mathematics, 3, Birkhäuser, Boston, 1980 | Zbl | DOI | MR

[PS08] C. A. M. Peters; J. H. M. Steenbrink Mixed Hodge Structures, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], 52, Springer, Berlin, 2008 | Zbl | MR

[Pri67] D. Prill Local classification of quotients of complex manifolds by discontinuous groups, Duke Math. J., Volume 34 (1967), pp. 375-386 | MR | Zbl | DOI

[Rei80] M. Reid Canonical 3-folds, Algebraic Geometry, Sijthoff & Noordhoff, Alphen aan den Rijn (1980) | Zbl

[Rei87] M. Reid Young person’s guide to canonical singularities, Algebraic Geometry, Bowdoin, 1985 (Proc. Sympos. Pure Math., 46), Amer. Math. Soc, Providence (1987), pp. 345-414 | MR | Zbl

[SS72] G. Scheja; U. Storch Differentielle Eigenschaften der Lokalisierungen analytischer Algebren, Math. Ann., Volume 197 (1972), pp. 137-170 | MR | Zbl | DOI

[Sei50] A. Seidenberg The hyperplane sections of normal varieties, Trans. Am. Math. Soc., Volume 69 (1950), pp. 357-386 | MR | Zbl

[Sha94] I. R. Shafarevich Basic Algebraic Geometry. 1, Springer, Berlin, 1994 (Varieties in projective space, Translated from the 1988 Russian edition and with notes by Miles Reid.) | Zbl | DOI | MR

[SvS85] J. Steenbrink; D. Straten Extendability of holomorphic differential forms near isolated hypersurface singularities, Abh. Math. Semin. Univ. Hamb., Volume 55 (1985), pp. 97-110 | Zbl | DOI | MR

[Ste85] J. H. M. Steenbrink Vanishing theorems on singular spaces, Astérisque, Volume 130 (1985), pp. 330-341 Differential systems and singularities (Luminy, 1983). | MR | Zbl | Numdam

[Sza94] E. Szabó Divisorial log terminal singularities, J. Math. Sci. Univ. Tokyo, Volume 1 (1994), pp. 631-639 | MR | Zbl

[Tei77] B. Teissier The hunting of invariants in the geometry of discriminants, Real and Complex Singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976), Sijthoff and Noordhoff, Alphen aan den Rijn (1977), pp. 565-678 | Zbl | MR

[Ver76] J.-L. Verdier Stratifications de Whitney et théorème de Bertini-Sard, Invent. Math., Volume 36 (1976), pp. 295-312 | MR | Zbl | DOI

[Vie10] E. Viehweg Compactifications of smooth families and of moduli spaces of polarized manifolds, Ann. Math., Volume 172 (2010), pp. 809-910 (arXiv:math/0605093.) | MR | Zbl | DOI

[VZ02] E. Viehweg; K. Zuo Base spaces of non-isotrivial families of smooth minimal models, Complex Geometry (Göttingen, 2000), Springer, Berlin (2002), pp. 279-328 | Zbl | MR | DOI

[Wah85] J. M. Wahl A characterization of quasihomogeneous Gorenstein surface singularities, Compos. Math., Volume 55 (1985), pp. 269-288 | MR | Zbl | Numdam

Cited by Sources: