The full renormalization horseshoe for unimodal maps of higher degree: exponential contraction along hybrid classes
Publications Mathématiques de l'IHÉS, Volume 114 (2011), pp. 171-223

We prove exponential contraction of renormalization along hybrid classes of infinitely renormalizable unimodal maps (with arbitrary combinatorics), in any even degree d. We then conclude that orbits of renormalization are asymptotic to the full renormalization horseshoe, which we construct. Our argument for exponential contraction is based on a precompactness property of the renormalization operator (“beau bounds”), which is leveraged in the abstract analysis of holomorphic iteration. Besides greater generality, it yields a unified approach to all combinatorics and degrees: there is no need to account for the varied geometric details of the dynamics, which were the typical source of contraction in previous restricted proofs.

Received:
Accepted:
Online First:
Published online:
DOI: 10.1007/s10240-011-0034-2

Artur Avila ; Mikhail Lyubich 1

1 Department of Mathematics, Stony Brook University Stony Brook, NY, 11794-3651 USA
@article{PMIHES_2011__114__171_0,
     author = {Artur Avila and Mikhail Lyubich},
     title = {The full renormalization horseshoe for unimodal maps of higher degree: exponential contraction along hybrid classes},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {171--223},
     year = {2011},
     publisher = {Springer-Verlag},
     volume = {114},
     doi = {10.1007/s10240-011-0034-2},
     zbl = {1286.37047},
     language = {en},
     url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-011-0034-2/}
}
TY  - JOUR
AU  - Artur Avila
AU  - Mikhail Lyubich
TI  - The full renormalization horseshoe for unimodal maps of higher degree: exponential contraction along hybrid classes
JO  - Publications Mathématiques de l'IHÉS
PY  - 2011
SP  - 171
EP  - 223
VL  - 114
PB  - Springer-Verlag
UR  - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-011-0034-2/
DO  - 10.1007/s10240-011-0034-2
LA  - en
ID  - PMIHES_2011__114__171_0
ER  - 
%0 Journal Article
%A Artur Avila
%A Mikhail Lyubich
%T The full renormalization horseshoe for unimodal maps of higher degree: exponential contraction along hybrid classes
%J Publications Mathématiques de l'IHÉS
%D 2011
%P 171-223
%V 114
%I Springer-Verlag
%U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-011-0034-2/
%R 10.1007/s10240-011-0034-2
%G en
%F PMIHES_2011__114__171_0
Artur Avila; Mikhail Lyubich. The full renormalization horseshoe for unimodal maps of higher degree: exponential contraction along hybrid classes. Publications Mathématiques de l'IHÉS, Volume 114 (2011), pp. 171-223. doi: 10.1007/s10240-011-0034-2

[AKLS] A. Avila; J. Kahn; M. Lyubich; W. Shen Combinatorial rigidity for unicritical polynomials, Ann. Math., Volume 170 (2009), pp. 783-797 | MR | Zbl | DOI

[ALM] A. Avila; M. Lyubich; W. Melo Regular or stochastic dynamics in real analytic families of unimodal maps, Invent. Math., Volume 154 (2003), pp. 451-550 | MR | Zbl | DOI

[ALS] A. Avila; M. Lyubich; W. Shen Parapuzzle of the Multibrot set and typical dynamics of unimodal maps, J. Eur. Math. Soc., Volume 13 (2011), pp. 27-56 | MR | Zbl | DOI

[Ca] H. Cartan Sur les rétractions d’une variété, C. R. Acad. Sci. Paris Sér. I, Math., Volume 303 (1986), p. 715 | MR | Zbl

[Ch] D. Cheraghi Combinatorial rigidity for some infinitely renormalizable unicritical polynomials, Conform. Geom. Dyn., Volume 14 (2010), pp. 219-255 | MR | Zbl | DOI

[Cv] P. Cvitanović Universality in Chaos, Adam Hilger, Bristol, 1984 | Zbl

[D] A. Douady Chirurgie sur les applications holomorphes, Proceedings of ICM-86, AMS, Providence (1987), pp. 724-738 | Zbl

[DH] A. Douady; J. H. Hubbard On the dynamics of polynomial-like maps, Ann. Sci. Ecole Norm. Super., Volume 18 (1985), pp. 287-343 | MR | Zbl | Numdam

[E] H. Epstein Fixed points of composition operators II, Nonlinearity, Volume 2 (1989), pp. 305-310 | MR | Zbl | DOI

[F] M. J. Feigenbaum Quantitative universality for a class of non-linear transformations, J. Stat. Phys., Volume 19 (1978), pp. 25-52 | MR | Zbl | DOI

[FM] E. Faria; W. Melo Rigidity of critical circle mappings I, J. Eur. Math. Soc., Volume 1 (1999), pp. 339-392 | Zbl | DOI

[GS] J. Graczyk; G. Swiatek Generic hyperbolicity in the logistic family, Ann. Math. (2), Volume 146 (1997), pp. 1-52 | MR | Zbl | DOI

[Hi] B. Hinkle Parabolic limits of renormalization, Ergod. Theory Dyn. Syst., Volume 20 (2000), pp. 173-229 | MR | Zbl | DOI

[K] J. Kahn, A priori bounds for some infinitely renormalizable quadratics: I. Bounded primitive combinatorics. Preprint IMS at Stony Brook, # 5 (2006).

[KL1] J. Kahn; M. Lyubich A priori bounds for some infinitely renormalizable quadratics: II. Decorations, Ann. Sci. Ecole Norm. Super., Volume 41 (2008), pp. 57-84 | MR | Zbl | Numdam

[KL2] J. Kahn; M. Lyubich A priori bounds for some infinitely renormalizable quadratics, III. Molecules, Complex Dynamics: Families and Friends. Proceeding of the conference dedicated to Hubbard’s 60th birthday, AK Peters, Wellesley (2009) | Zbl

[KSS] O. Kozlovski; W. Shen; S. Strien Rigidity for real polynomials, Ann. Math., Volume 165 (2007), pp. 749-841 | Zbl | DOI

[KS] K. Krzyzewski; W. Szlenk On invariant measures for expanding differential mappings, Studia Math., Volume 33 (1969), pp. 83-92 | MR | Zbl

[La] O. E. Lanford A computer assisted proof of the Feigenbaum conjectures, Bull. Am. Math. Soc., Volume 6 (1982), pp. 427-434 | MR | Zbl | DOI

[LvS] G. Levin; S. Strien Local connectivity of Julia sets of real polynomials, Ann. Math., Volume 147 (1998), pp. 471-541 | Zbl | DOI

[L1] M. Lyubich Combinatorics, geometry and attractors of quasi-quadratic maps, Ann. Math., Volume 140 (1994), pp. 347-404 | MR | Zbl | DOI

[L2] M. Lyubich Dynamics of quadratic polynomials. I, II, Acta Math., Volume 178 (1997), pp. 185-297 | MR | Zbl | DOI

[L3] M. Lyubich Feigenbaum-Coullet-Tresser universality and Milnor’s hairiness conjecture, Ann. Math.  (2), Volume 149 (1999), pp. 319-420 | MR | Zbl | DOI

[L4] M. Lyubich Almost every real quadratic map is either regular or stochastic, Ann. Math. (2), Volume 156 (2002), pp. 1-78 | MR | Zbl | DOI

[LY] M. Lyubich; M. Yampolsky Dynamics of quadratic polynomials: complex bounds for real maps, Ann. Inst. Fourier, Volume 47 (1997), pp. 1219-1255 | DOI | MR | Zbl | Numdam

[Lju1] Y. I. Ljubich Introduction to the Theory of Banach Representations of Groups, Birkhäuser, Basel, 1988 | Zbl | DOI

[Lju2] Y. I. Ljubich Dissipative actions and almost periodic representations of abelian semigroups, Ukr. Math. J., Volume 40 (1988), pp. 58-62 | Zbl | DOI

[Ma1] M. Martens Distortion results and invariant Cantor sets for unimodal maps, Ergod. Theory Dyn. Syst., Volume 14 (1994), pp. 331-349 | MR | Zbl | DOI

[Ma2] M. Martens The periodic points of renormalization, Ann. Math., Volume 147 (1998), pp. 543-584 | MR | Zbl | DOI

[McM1] C. McMullen Complex Dynamics and Renormalization, Annals of Math. Studies, 135, Princeton University Press, Princeton, 1994 | Zbl

[McM2] C. McMullen Renormalization and 3-Manifolds which Fiber over the Circle, Annals of Math. Studies, 135, Princeton University Press, Princeton, 1996 | Zbl

[MvS] W. Melo; S. Strien One-Dimensional Dynamics, Springer, Berlin, 1993 | Zbl

[Mi] J. Milnor Periodic orbits, external rays, and the Mandelbrot set: expository lectures, Géometrie complexe et systémes dynamiques, Volume in Honor of Douady’s 60th Birthday (Astérisque, 261) (2000), pp. 277-333 | Zbl | Numdam

[MSS] R. Mañé; P. Sad; D. Sullivan On the dynamics of rational maps, Ann. Sci. Ecole Norm. Super., Volume 16 (1983), pp. 193-217 | Zbl | Numdam

[Sl] Z. Slodkowski Holomorphic motions and polynomial hulls, Proc. Am. Math. Soc., Volume 111 (1991), pp. 347-355 | MR | Zbl | DOI

[S] D. Sullivan Bounds, Quadratic Differentials, and Renormalization Conjectures, AMS Centennial Publications, 2, 1992 (Mathematics into Twenty-first Century) | Zbl

[TC] C. Tresser; P. Coullet Itération d’endomorphismes et groupe de renormalisation, C. R. Acad. Sci. Paris A, Volume 287 (1978), pp. 577-580 | MR | Zbl

Cited by Sources: