Stability and absence of binding for multi-polaron systems
Publications Mathématiques de l'IHÉS, Volume 113 (2011), pp. 39-67

We resolve several longstanding problems concerning the stability and the absence of multi-particle binding for N≥2 polarons. Fröhlich’s 1937 polaron model describes non-relativistic particles interacting with a scalar quantized field with coupling $\sqrt{\alpha}$, and with each other by Coulomb repulsion of strength U. We prove the following: (i) While there is a known thermodynamic instability for U<2α, stability of matter does hold for U>2α, that is, the ground state energy per particle has a finite limit as N→∞. (ii) There is no binding of any kind if U exceeds a critical value that depends on α but not on N. The same results are shown to hold for the Pekar-Tomasevich model.

Received:
Accepted:
Online First:
Published online:
DOI: 10.1007/s10240-011-0031-5

Rupert L. Frank 1; Elliott H. Lieb 2; Robert Seiringer 3; Lawrence E. Thomas 4

1 Department of Mathematics, Princeton University Washington Road, Princeton, NJ, 08544 USA
2 Departments of Mathematics and Physics, Princeton University P.O. Box 708, Princeton, NJ, 08544 USA
3 Department of Physics, Princeton University P.O. Box 708, Princeton, NJ, 08544 USA
4 Department of Mathematics, University of Virginia Charlottesville, VA, 22904 USA
@article{PMIHES_2011__113__39_0,
     author = {Rupert L. Frank and Elliott H. Lieb and Robert Seiringer and Lawrence E. Thomas},
     title = {Stability and absence of binding for~multi-polaron systems},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {39--67},
     year = {2011},
     publisher = {Springer-Verlag},
     volume = {113},
     doi = {10.1007/s10240-011-0031-5},
     mrnumber = {2805597},
     zbl = {1227.82083},
     language = {en},
     url = {https://pmihes.centre-mersenne.org/articles/10.1007/s10240-011-0031-5/}
}
TY  - JOUR
AU  - Rupert L. Frank
AU  - Elliott H. Lieb
AU  - Robert Seiringer
AU  - Lawrence E. Thomas
TI  - Stability and absence of binding for multi-polaron systems
JO  - Publications Mathématiques de l'IHÉS
PY  - 2011
SP  - 39
EP  - 67
VL  - 113
PB  - Springer-Verlag
UR  - https://pmihes.centre-mersenne.org/articles/10.1007/s10240-011-0031-5/
DO  - 10.1007/s10240-011-0031-5
LA  - en
ID  - PMIHES_2011__113__39_0
ER  - 
%0 Journal Article
%A Rupert L. Frank
%A Elliott H. Lieb
%A Robert Seiringer
%A Lawrence E. Thomas
%T Stability and absence of binding for multi-polaron systems
%J Publications Mathématiques de l'IHÉS
%D 2011
%P 39-67
%V 113
%I Springer-Verlag
%U https://pmihes.centre-mersenne.org/articles/10.1007/s10240-011-0031-5/
%R 10.1007/s10240-011-0031-5
%G en
%F PMIHES_2011__113__39_0
Rupert L. Frank; Elliott H. Lieb; Robert Seiringer; Lawrence E. Thomas. Stability and absence of binding for multi-polaron systems. Publications Mathématiques de l'IHÉS, Volume 113 (2011), pp. 39-67. doi: 10.1007/s10240-011-0031-5

[1.] A. S. Alexandrov; J. T. Devreese Advances in Polaron Physics, Springer, Berlin, 2010 | DOI

[2.] F. Brosens; S. N. Klimin; J. T. Devreese Variational path-integral treatment of a translation invariant many-polaron system, Phys. Rev. B, Volume 71 (2005), pp. 214301-214313 | DOI

[3.] J. G. Conlon; E. H. Lieb; H.-T. Yau The N 7/5 law for charged bosons, Commun. Math. Phys., Volume 116 (1988), pp. 417-448 | MR | DOI

[4.] H. L. Cycon; R. G. Froese; W. Kirsch; B. Simon Schrödinger Operators. Springer Texts and Monographs in Physics, 1987 | Zbl

[5.] J. Dolbeault; A. Laptev; M. Loss Lieb-Thirring inequalities with improved constants, J. Eur. Math. Soc. (JEMS), Volume 10 (2008), pp. 1121-1126 | MR | Zbl | DOI

[6.] M. Donsker; S. R. S. Varadhan Asymptotics for the polaron, Commun. Pure Appl. Math., Volume 36 (1983), pp. 505-528 | MR | Zbl | DOI

[7.] R. P. Feynman Slow electrons in a polar crystal, Phys. Rev., Volume 97 (1955), pp. 660-665 | Zbl | DOI

[8.] R. L. Frank; E. H. Lieb; R. Seiringer; L. E. Thomas Bi-polaron and N-polaron binding energies, Phys. Rev. Lett., Volume 104 (2010) | DOI

[9.] H. Fröhlich Theory of electrical breakdown in ionic crystals, Proc. R. Soc. Lond. A, Volume 160 (1937), pp. 230-241 | DOI

[10.] J. Fröhlich Existence of dressed one-electron states in a class of persistent models, Fortschr. Phys., Volume 22 (1974), pp. 159-198 | DOI

[11.] G. Gallavotti; J. Ginibre; G. Velo Statistical mechanics of the electron-phonon system, Lett. Nuovo Cimento, Volume 28B (1970), pp. 274-286

[12.] B. Gerlach; H. Löwen Absence of phonon-induced localization for the free optical polaron and the corresponding Wannier exciton-phonon system, Phys. Rev. B, Volume 37 (1988), pp. 8042-8047 | DOI

[13.] B. Gerlach; H. Löwen Analytical properties of polaron systems or: do polaronic phase transitions exist or not?, Rev. Mod. Phys., Volume 63 (1991), pp. 63-90 | MR | DOI

[14.] M. Griesemer; J. S. Møller Bounds on the minimal energy of translation invariant N-polaron systems, Commun. Math. Phys., Volume 297 (2010), pp. 283-297 | Zbl | MR | DOI

[15.] M. Gurari Self-energy of slow electrons in polar materials, Philos. Mag. Ser. 7, Volume 44 (1953), pp. 329-336 | Zbl

[16.] M. Hirokawa, Stability of formation of large bipolaron: non-relativistic quantum field theory, preprint (2006), . | arXiv

[17.] M. Hoffmann-Ostenhof; T. Hoffmann-Ostenhof Schrödinger inequalities and asymptotics behavior of the electron density of atoms and molecules, Phys. Rev. A, Volume 16 (1977), pp. 1782-1785 | MR | DOI

[18.] T.-D. Lee; D. Pines The motion of slow electrons in polar crystals, Phys. Rev., Volume 88 (1952), pp. 960-961 | DOI

[19.] T.-D. Lee; F. Low; D. Pines The motion of slow electrons in a polar crystal, Phys. Rev., Volume 90 (1953), pp. 297-302 | MR | Zbl | DOI

[20.] E. H. Lieb Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation, Stud. Appl. Math., Volume 57 (1976/77), pp. 93-105 | MR | Zbl

[21.] E. H. Lieb; S. Oxford An improved lower bound on the indirect Coulomb energy, Int. J. Quant. Chem., Volume 19 (1981), pp. 427-439 | DOI

[22.] E. H. Lieb; R. Seiringer The Stability of Matter in Quantum Mechanics, Cambridge University Press, Cambridge, 2010 | MR | Zbl

[23.] E. H. Lieb; J. P. Solovej Ground state energy of the one-component charged Bose gas, Commun. Math. Phys., Volume 217 (2001), pp. 127-163 | MR | Zbl | DOI

[24.] E. H. Lieb; W. Thirring Bound for the kinetic energy of fermions which proves the stability of matter, Phys. Rev. Lett., Volume 35 (1975), pp. 687-689 Erratum: ibid., 35 (1975), 1116 | DOI

[25.] E. H. Lieb; L. E. Thomas Exact ground state energy of the strong-coupling polaron, Commun. Math. Phys., Volume 183 (1997), pp. 511-519 Erratum: ibid., 188 (1997), 499–500 | MR | Zbl | DOI

[26.] E. H. Lieb; K. Yamazaki Ground-state energy and effective mass of the polaron, Phys. Rev., Volume 111 (1958), p. 728-722 | Zbl | DOI

[27.] S. J. Miyake Strong coupling limit of the polaron ground state, J. Phys. Soc. Jpn., Volume 38 (1975), pp. 181-182 | DOI

[28.] T. Miyao; H. Spohn The bipolaron in the strong coupling limit, Ann. Henri Poincaré, Volume 8 (2007), pp. 1333-1370 | MR | Zbl | DOI

[29.] J. S. Møller The polaron revisited, Rev. Math. Phys., Volume 18 (2006), pp. 485-517 | MR | Zbl | DOI

[30.] E. Nelson Interaction of non-relativistic particles with a quantized scalar field, J. Math. Phys., Volume 5 (1964), pp. 1190-1197 | MR | DOI

[31.] S. I. Pekar, Research in Electron Theory of Crystals, United States Atomic Energy Commission, Washington, DC, 1963.

[32.] S. I. Pekar; O. F. Tomasevich Theory of F centers, Zh. Eksp. Teor. Fys., Volume 21 (1951), pp. 1218-1222

[33.] G. Roepstorff Path Integral Approach to Quantum Physics, Springer, Berlin-Heidelberg-New York, 1994 | Zbl | MR

[34.] M. A. Smondyrev; V. M. Fomin Pekar-Fröhlich bipolarons, Polarons and Applications, Proceedings in Nonlinear Science, Wiley, New York (1994)

[35.] H. Spohn The polaron functional integral, Stochastic Processes and Their Applications, Kluwer, Dordrecht-Boston-London (1990) | MR | Zbl

[36.] M. A. Smondyrev; G. Verbist; F. M. Peeters; J. T. Devreese Stability of multi polaron matter, Phys. Rev. B, Volume 47 (1993), pp. 2596-2601 | DOI

[37.] G. Verbist; F. M. Peeters; J. T. Devreese Large bipolarons in two and three dimensions, Phys. Rev. B, Volume 43 (1991), pp. 2712-2720 | DOI

[38.] G. Verbist; M. A. Smondyrev; F. M. Peeters; J. T. Devreese Strong-coupling analysis of large bipolarons in two and three dimensions, Phys. Rev. B, Volume 45 (1992), pp. 5262-5269 | DOI

Cited by Sources: