The homotopy Lie algebra for finite complexes
Publications Mathématiques de l'IHÉS, Volume 56 (1982), pp. 179-202
Received:
Published online:
DOI: 10.1007/BF02700466
@article{PMIHES_1982__56__179_0,
     author = {Yves F\'elix and Stephen Halperin and Jean-Claude Thomas},
     title = {The homotopy {Lie} algebra for finite complexes},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {179--202},
     year = {1982},
     publisher = {Institut des Hautes \'Etudes Scientifiques},
     volume = {56},
     doi = {10.1007/BF02700466},
     mrnumber = {85c:55010},
     zbl = {0504.55005},
     language = {en},
     url = {https://pmihes.centre-mersenne.org/articles/10.1007/BF02700466/}
}
TY  - JOUR
AU  - Yves Félix
AU  - Stephen Halperin
AU  - Jean-Claude Thomas
TI  - The homotopy Lie algebra for finite complexes
JO  - Publications Mathématiques de l'IHÉS
PY  - 1982
SP  - 179
EP  - 202
VL  - 56
PB  - Institut des Hautes Études Scientifiques
UR  - https://pmihes.centre-mersenne.org/articles/10.1007/BF02700466/
DO  - 10.1007/BF02700466
LA  - en
ID  - PMIHES_1982__56__179_0
ER  - 
%0 Journal Article
%A Yves Félix
%A Stephen Halperin
%A Jean-Claude Thomas
%T The homotopy Lie algebra for finite complexes
%J Publications Mathématiques de l'IHÉS
%D 1982
%P 179-202
%V 56
%I Institut des Hautes Études Scientifiques
%U https://pmihes.centre-mersenne.org/articles/10.1007/BF02700466/
%R 10.1007/BF02700466
%G en
%F PMIHES_1982__56__179_0
Yves Félix; Stephen Halperin; Jean-Claude Thomas. The homotopy Lie algebra for finite complexes. Publications Mathématiques de l'IHÉS, Volume 56 (1982), pp. 179-202. doi: 10.1007/BF02700466

[A-A] P. Andrews, M. Arkowitz, Sullivan's minimal models and higher order Whitehead products, Can. J. Math., XXX, n° 5 (1978), 961-982. | Zbl | MR

[A1] L. Avramov, Free Lie subalgebras of the cohomology of local rings, Trans. A.M.S., 270 (1982), 589-608. | Zbl | MR

[A2] L. Avramov, Differential graded models for local rings, to appear. | Zbl

[BG] A. K. Bousfield, V. K. A. M. Gugenheim, On the P.L. de Rham theory and rational homotopy type, Memoirs A.M.S., 179 (1976). | Zbl | MR

[CE] H. Cartan, S. Eilenberg, Homological Algebra, Princeton University Press, n° 19 (1956). | Zbl | MR

[F] Y. Felix, Modèles bifiltrés : une plaque tournante en homotopie rationnelle, Can. J. Math., 23 (n° 26) (1981), 1448-1458. | Zbl | MR

[F-H] Y. Felix, S. Halperin, Rational LS category and its applications, Trans. A.M.S., 273 (1982), 1-38. | Zbl | MR

[F-T] Y. Felix, J. C. Thomas, Radius of convergence of Poincaré series of loop spaces, Invent. Math., 68 (1982), 257-274. | Zbl | MR

[Fr-H] J. Friedlander, S. Halperin, An arithmetic characterization of the rational homotopy groups of certain spaces, Invent. Math., 53 (1979), 117-138. | Zbl | MR

[Ga] T. Ganea, Lusternik-Schnirelmann category and cocategory, Proc. London Math. Soc., 10 (1960), 623-639. | Zbl | MR

[Gu] T. Gulliksen, A homological characterization of local complete intersections, Compositio mathematica, 23 (3) (1971), 251-255. | Zbl | MR | Numdam

[H1] S. Halperin, Finiteness in the minimal models of Sullivan, Trans. A.M.S., 230 (1977), 173-199. | Zbl | MR

[H2] S. Halperin, Spaces whose rational homology and ψ-homotopy is finite dimensional, to appear.

[H3] S. Halperin, Lectures on minimal models, Publication I.R.M.A., Vol. 3, Fasc. 4 (1981), third edition. | Zbl | MR

[L] J.-M. Lemaire, Algèbres connexes et homologie des espaces de lacets, Springer Lecture Notes, 422 (1974). | Zbl | MR

[L-S] J.-M. Lemaire, F. Sigrist, Sur les invariants d'homotopie rationnelle liés à la LS catégorie, Comment. Math. Helvetici (56) (1981), 103-122. | Zbl | MR

[Q] D. Quillen, Rational homotopy theory, Ann. of Math., 90 (1969), 205-295. | Zbl | MR

[R] J. E. Roos, Relations between the Poincaré-Betti series of loop spaces and of local rings, Springer Lecture Notes, 740, 285-322. | Zbl | MR

[S] D. Sullivan, Infinitesimal computations in topology, Publ. Math. I.H.E.S., 47 (1978), 269-331. | Zbl | MR | Numdam

Cited by Sources: