@article{PMIHES_1984__59__143_0,
author = {Charles C. Pugh},
title = {The $C^{1}+\alpha $ hypothesis in {Pesin} theory},
journal = {Publications Math\'ematiques de l'IH\'ES},
pages = {143--161},
year = {1984},
publisher = {Institut des Hautes \'Etudes Scientifiques},
volume = {59},
doi = {10.1007/BF02698771},
mrnumber = {743817},
zbl = {0542.58027},
language = {en},
url = {https://pmihes.centre-mersenne.org/articles/10.1007/BF02698771/}
}
TY - JOUR
AU - Charles C. Pugh
TI - The $C^{1}+\alpha $ hypothesis in Pesin theory
JO - Publications Mathématiques de l'IHÉS
PY - 1984
SP - 143
EP - 161
VL - 59
PB - Institut des Hautes Études Scientifiques
UR - https://pmihes.centre-mersenne.org/articles/10.1007/BF02698771/
DO - 10.1007/BF02698771
LA - en
ID - PMIHES_1984__59__143_0
ER -
%0 Journal Article
%A Charles C. Pugh
%T The $C^{1}+\alpha $ hypothesis in Pesin theory
%J Publications Mathématiques de l'IHÉS
%D 1984
%P 143-161
%V 59
%I Institut des Hautes Études Scientifiques
%U https://pmihes.centre-mersenne.org/articles/10.1007/BF02698771/
%R 10.1007/BF02698771
%G en
%F PMIHES_1984__59__143_0
Charles C. Pugh. The $C^{1}+\alpha $ hypothesis in Pesin theory. Publications Mathématiques de l'IHÉS, Volume 59 (1984), pp. 143-161. doi: 10.1007/BF02698771
[1] , and , A proof of Pesin's Stable Manifold Theorem, preprint of Université de Paris-Sud, Orsay, France. | Zbl
[2] , Generic Properties of Polynomial Vector Fields at Infinity, Trans. AMS, 143 (1969), 201-222. | Zbl | MR
[3] , and , Invariant Manifolds, Springer Lecture Notes, 583, 1977. | Zbl | MR
[4] , Lyapunov Exponents, Entropy and Periodic Orbits for Diffeomorphisms, Publ. Math. IHES, 51 (1980), 137-173. | Zbl | MR | Numdam
[5] , Introducão à Teoria Ergódica, IMPA, 1979.
[6] , Multiplicative Ergodic Theorem, Lyapunov Characteristic Exponents for Dynamical Systems, Trans. Moscow Math. Soc., 19 (1968), 197-231. | Zbl | MR
[7] , Families of Invariant Manifolds Corresponding to Nonzero Characteristic Exponents, Math. USSR Izvestija, 10 (1976), 1261-1305. | Zbl
[8] , Characteristic Lyapunov Exponents and Smooth Ergodic Theory, Russian Math. Surveys, 32 (1977), 4, 55-114. | Zbl
[9] , Ergodic Theory of Differentiable Dynamical Systems, Publ. Math. IHES, 50 (1979), 27-58. | Zbl | MR | Numdam
[10] , Local Cn Transformations of the Real Line, Duke Mathematical Journal, 24 (1957), 97-102. | Zbl | MR
Cited by Sources: