A counterexample to the rigidity conjecture for polyhedra
Publications Mathématiques de l'IHÉS, Volume 47 (1977), pp. 333-338
@article{PMIHES_1977__47__333_0,
author = {Robert Connelly},
title = {A counterexample to the rigidity conjecture for polyhedra},
journal = {Publications Math\'ematiques de l'IH\'ES},
pages = {333--338},
year = {1977},
publisher = {Institut des Hautes \'Etudes Scientifiques},
volume = {47},
doi = {10.1007/BF02684342},
zbl = {0375.53034},
language = {en},
url = {https://pmihes.centre-mersenne.org/articles/10.1007/BF02684342/}
}
TY - JOUR AU - Robert Connelly TI - A counterexample to the rigidity conjecture for polyhedra JO - Publications Mathématiques de l'IHÉS PY - 1977 SP - 333 EP - 338 VL - 47 PB - Institut des Hautes Études Scientifiques UR - https://pmihes.centre-mersenne.org/articles/10.1007/BF02684342/ DO - 10.1007/BF02684342 LA - en ID - PMIHES_1977__47__333_0 ER -
%0 Journal Article %A Robert Connelly %T A counterexample to the rigidity conjecture for polyhedra %J Publications Mathématiques de l'IHÉS %D 1977 %P 333-338 %V 47 %I Institut des Hautes Études Scientifiques %U https://pmihes.centre-mersenne.org/articles/10.1007/BF02684342/ %R 10.1007/BF02684342 %G en %F PMIHES_1977__47__333_0
Robert Connelly. A counterexample to the rigidity conjecture for polyhedra. Publications Mathématiques de l'IHÉS, Volume 47 (1977), pp. 333-338. doi: 10.1007/BF02684342
[1] , Mémoire sur la théorie de l'octaèdre articulé, J. Math. Pures Appl. (5), 3 (1897), 113-148. | JFM | Numdam
[2] , Sur les polygones et polyèdres, Second Mémoire, J. École Polytechnique, 19 (1813), 87-98.
[3] , An immersed polyhedral surface which flexes, Indiana University Math. J., 25 (1976), 965-972. | Zbl | MR
[4] , The rigidity of suspensions, to appear in the Journal of Differential Topology. | Zbl
[5] , Almost all simply connected closed surfaces are rigid, Lecture Notes in Math. 438, Geometric Topology, Springer-Verlag (1975), 225-239. | Zbl | MR
[6] , On C1-isometric imbeddings, Indag. Math. XVII (1954), 545-556 and 683-689. | Zbl | MR
Cited by Sources:
